

Timingsrc v3 Documentation

Timingsrc is hosted at GitHub [https://github.com/webtiming/timingsrc].

Timingsrc

A programming model for time sensitive Web applications, based on the Timing Object. Precise timing, synchronization and control enabled for single-device and multi-device Web applications.

Welcome to timingsrc!

Timingsrc is a programming model for precisely timed Web applications. The model is based on the Timing Object, which allows precise synchronization and control across multiple media sources, media types, UI components and media frameworks.

For online timing support, connect an online Timing Provider to the Timing Object. The Shared Motion Timing Provider is hosted online and provides millisecond precise timing globally for Web clients and is open for non-commercial experimentation.

	Need to synchronize HTML5 video?

	Check out Demo MediaSync

	Need to synchronize timed data?

	Check out Demo Sequencer Point Mode or Demo Sequencer Interval Mode

	Need to go online?

	Check out Demo TimingProvider

Timing Object

let to = new TimingObject();

The TimingObject is the central concept of the timingsrc programming model. In essence, the timingobject is a timeline with an API for control. If you set velocity, the position on the timeline will increase in time according to that velocity. The timing object additionally supports behavior like time-shifting, different velocities (including backwards), and acceleration.

	Timing Object

	Timing Object API

Timing Converter

let c = new SkewConverter(to, 4.0);

A TimingConverter is a special kind of timing objects that depends on a parent timing object. Timing converters are useful when you need an alternative representations for a timing object. For instance, timing converters may be used to skew or scale the timeline.

	Timing Converter

	Timing Converter API

Timing Provider

let to = new TimingObject({provider: timing_provider});

Timing objects may be connected to remote timing resources, i.e. timing resources which live outside the browsing context, for instance hosted by an online timing service. This is done by initializing the timing object with a TimingProvider. Timing providers are proxy objects to external timing resources, allowing timing objects to be used across different service implementations for timing resources.

	Timing Provider

	Timing Provider API

Dataset and Sequencer

let ds = new Dataset();
let s = new Sequencer(ds, to);

Consistent playback of timed data is a key use case for the timing object. This is achieved using Dataset and Sequencer. Dataset allows
any type of time data to be represented as cues. Sequencers dynamically
provides the set of active cues, always consistent with the timing object. Both dataset and sequencer implement the :ref`cuecollection` interface.

	Cue Collection

	Cue Collection API

	Dataset

	Dataset API

	Sequencer

	Sequencer API

MediaSync

let ms = new MediaSync(to, video_element);

Another important use case is consistent playback of HTML5 audio and video.
This is achieved by connecting the video element to the timing object, using the MediaSync wrapper.

	MediaSync

	MediaSync API

Indices and tables

	Index

Introduction

The Web is arguably the most important platform for multi-media, with universal
reach and a rich selection of powerful media frameworks. This includes built-in
frameworks such as MediaElement [https://www.w3.org/TR/2011/WD-html5-20110113/video.html], WebAudio [https://www.w3.org/TR/webaudio/], WebGL [https://get.webgl.org/], and WebAnimation [https://www.w3.org/TR/web-animations-1/]
– and also a host of external frameworks, extensions, plugins, components or
tools for rendering or visualizing all kinds of data and media types.

With so many powerful frameworks for rendering and visualization, the idea of
combining them is both intuitive and highly attractive. After all, flexible
composition is a defining characteristic of the Web. For example, live
coverage of sport car racing might target co-presentation of a number of media
types, including camera angles, audio commentary, sound effects, data-driven
infographics, animated maps, social media and more.

However, co-presentation of timed media content requires fairly precise
synchronization, and the Web has little support for this. The Web is primarily a
platform for embedding independent media frameworks. It offers no particular
mechanism for precise coordination across different media frameworks.

The consequences of this are quite visible. Media providers are
eagerly extending their offerings with more data sources and streams, yet
without the ability to time-align them correctly, user experiences may quickly
become inconsistent, annoying, confusing, or simply broken. A well known example is soccer goal alerts going off 30 seconds before the goal happens in the live video stream.

In the media industry, low-latency streaming is sometimes suggested as a remedy for such issues. This though, assumes that media content is a single video stream, or that all media contents can be assembled into a single container ahead of distribution. Importantly, the promise of the IP/Web domain is quite the opposite, with media experiences assembled on consumer devices (i.e. late binding) leveraging a multitude of independent content sources, distribution mechanims and production chains, as well as exploiting a variety of data formats and interactive rendering technologies. In this world, different production chains may yield substantially different end-to-end delays, and low-latency streaming may even contribute to the variation.

So, the core issue is not with data distribution, but rather with the user experience. Going back to the fundamentals, media experiences have always been defined with a concept of presentation timeline at heart, as a basis for consistent presentation/playback of media content. The core problem right now is that each content source defines its own presentation timeline and simply expects the user to adopt it. Clearly, this approach does not scale beyond a single content source. Instead, what is needed is:

	A user timeline. An independent presentation timeline for the user experience

	The ability to align the presentation timelines of each content source / media framework to the user timeline

	The ability to synchronize user timelines across connected devices, allowing consistent media experiences spanning multiple devices.

It appears that such a timeline concept will be central going forward, as linear media is gradually being re-invented for the IP/Web domain, Yet the Web platform does not have such a concept. As gaps go, this gap is pretty significant. And to be frank, rather embarrassing too. The Web is arguably the most important multi-media platform world wide. Yet, ironically, multi-media playback is largely delegated to embedded frameworks, and cross framework playback is simply not supported.

Timingsrc is a JavaScript framework adressing this gap. Timingsrc introduces a much needed programming model for timing, synchronization and control on the Web. The central concept is the Timing Object. It provides a generic timeline concept with time-controls and events. Media frameworks connected to a shared timing object may align their internal presentation timelines precisely to the timing object and implement swift reactions to shared media control. Furthermore, timing objects may be synchronized globally, if connected to online timing providers such as Shared Motion Timing Provider for global synchroninization. An introduction to the Timing Object programming model is published as the motion model in a book chapter titled Media Synchronization on the Web [https://link.springer.com/chapter/10.1007/978-3-319-65840-7_17].

Module

Source code

Timingsrc at GitHub [https://github.com/webtiming/timingsrc].

Include as script

<!DOCTYPE html>
<html>
 <head>
 <script type="text/javascript" src="https://webtiming.github.io/timingsrc/lib/timingsrc-v3.js">
 </script>
 <script type="text/javascript">
 console.log(`hello world timingsrc version ${TIMINGSRC.version}!`);
 </script>
 </head>
 <body>
 </body>
</html>

	Full source

	https://webtiming.github.io/timingsrc/lib/timingsrc-v3.js

	Minified source

	https://webtiming.github.io/timingsrc/lib/timingsrc-min-v3.js

Include as ES6 module

<!DOCTYPE html>
<html>
 <head>
 <script type="module">
 import * as TIMINGSRC from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";
 console.log(`hello world timingsrc version ${TIMINGSRC.version}!`);
 </script>
 </head>
 <body>
 </body>
</html>

	Full source

	https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js

	Minified source

	https://webtiming.github.io/timingsrc/lib/timingsrc-min-esm-v3.js

Namespace

// utils
export * as utils from './util/utils.js';
export * as motionutils from './util/motionutils.js';
export {default as BinarySearch} from './util/binarysearch.js';
export {default as endpoint} from './util/endpoint.js';
export {default as eventify} from './util/eventify.js';
export {default as Interval} from './util/interval.js';
export {default as CueCollection} from './dataset/cuecollection.js';
export {default as Timeout} from './util/timeout.js';

// timing object
export {default as TimingObject} from './timingobject/timingobject.js';
export {default as SkewConverter} from './timingobject/skewconverter.js';
export {default as DelayConverter} from './timingobject/delayconverter.js';
export {default as ScaleConverter} from './timingobject/scaleconverter.js';
export {default as LoopConverter} from './timingobject/loopconverter.js';
export {default as RangeConverter} from './timingobject/rangeconverter.js';
export {default as TimeshiftConverter} from './timingobject/timeshiftconverter.js';
export {default as TimingSampler} from './timingobject/timingsampler.js';
export {default as PositionCallback} from './timingobject/positioncallback.js';

// timed data
export {default as Dataset} from './dataset/dataset.js';
export {default as Subset} from './dataset/subset.js';
import {default as PointModeSequencer} from './sequencing/pointsequencer.js';
import {default as IntervalModeSequencer} from './sequencing/intervalsequencer.js';
export function Sequencer(axis, toA, toB) {
 if (toB === undefined) {
 return new PointModeSequencer(axis, toA);
 } else {
 return new IntervalModeSequencer(axis, toA, toB);
 }
};

// ui
export {default as DatasetViewer} from './ui/datasetviewer.js';
export {default as TimingProgress} from './ui/timingprogress.js';

export const version = "v3.0";

Quickstart

This quickstart tutorial demonstrates playback of any kind of timed data.

Step 1 : Create a Webpage

Setup a webpage and initialise key timingsrc concepts:

	Timing Object for playback control

	Dataset for cue management

	Sequencer for cue playback

<!DOCTYPE html>
<html>
 <head>
 <script type="module">
 import {TimingObject, Dataset, Sequencer, Interval} from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
 const to = new TimingObject();
 const ds = new Dataset();
 const activeCues = new Sequencer(ds, to);
 ...
 </script>
 </head>
 <body>
 <div id="cues"></div>
 ...
 </body>
</html>

Also, unless the timing object is to be remote controlled by an external timing object, the webpage needs to define some playback controls, for instance see: Basic Timing Object Controls.

Step 2 : Load cues

There are no restrictions regarding data format or data source. As long as data
can be made available within the webpage, it can be used in timed presentation.
In this example, we will simply use som mock data.

// mockup timed data
const data = [
 {id:"a", text: 'A', start: 0, end: 1 },
 {id:"b", text: 'B', start: 2, end: 3 },
 {id:"c", text: 'C', start: 4, end: 5 },
 {id:"d", text: 'D', start: 6, end: 7 },
 {id:"e", text: 'E', start: 8, end: 9 },
 ...
];

// make cues
const cues = data.map(item => {
 return {
 key: item.id,
 interval: new Interval(item.start, item.end),
 data: item
 };
});

// load into dataset
ds.update(cues);

Step 3 : Render dataset cues

In this example the dataset is assumed to be static. If the dataset is dynamic, use change, remove events to keep the visualization up
to date.

// construct a list from dataset cues
document.getElementById("cues").innerHTML = [...ds.values()]
 .map(function(cue){
 let text = JSON.stringify(cue.data);
 if (activeCues.has(cue.key)) {
 return `<div id=${cue.key} class="active">${text}</div>`;
 } else {
 return `<div id=${cue.key}>${text}</div>`;
 }
 })
 .join("\n");

Step 4 : Render active cues

Finally, render active cues by specifying what happens when:

	an inactive cue becomes active

	an active cue becomes inactive

In this example, this is done simply by setting or removing the css classname active on cue list elements.

activeCues.on("change", (eArg, eInfo) => {
 let el = document.getElementById(eArg.key);
 if (el) {
 el.classList.add("active");
 }
});

activeCues.on("remove", (eArg, eInfo) => {
 let el = document.getElementById(eArg.key);
 if (el) {
 el.classList.remove("active");
 }
});

Ready

Ready to load the page and start controlling the timing object.

Version

Timingsrc v3 is a major revision on timingsrc v2 [https://webtiming.github.io/timingsrc/]. The two versions
are functionally equivalent. However, as version
3 makes adjustments to the API’s, v3 is not backwards compatible
with v2.

Major changes

	In v2 the Sequencer did cue management internally and the Sequencer provided access both to cues and active cues. In v3 cue management is made explicit by introducing the Dataset as an independent concept. In v3 the pattern is to create a dataset an then to create one or more sequencers connected to the dataset.

	V2 had issues with efficiency as update batch sizes grew beyond O(1K) cues. V3 is a reimplementation with efficiency in focus providing scalable performance measures for update batch sizes at least beyond O(100K), see Dataset Performance.

	V3 simplifies and aligns API’s of dataset and sequencer. Both concepts are collections of cues with identical API for cue access. Datasets are used for cue management, whereas sequencers are used for playback. A sequencer provides a dynamic view into a the active cues of its dataset.

	In v3, dataset have become a valuable tool for management, lookup and visualization of timed data, useful also without sequencers.

Minor changes

	Unsubscribe from events EventProviderInterface.off() is changed so that it takes a subscription handle returned by EventProviderInterface.on().

	Event type events in v2 is renamed to batch, see Batch Event.

	The sequencer constructor signature changed from Sequencer(toA[, toB]) to Sequencer(dataset, toA[, toB]).

	Sequencers no longer support primitives for cue manipulation. This is now handled exclusively by the dataset, see Dataset Update.

	Sequencer events no longer contain detailed information about the cause of the event, such as movement direction and interval entry point.

	Sequencer no longer optimises precision of setTimeout as was the case in v2.

	V3 uses modern Javascripts features such as class, arrow functions and module imports.

	V3 also brings extensive code cleanup, refactoring, improved code design and more unittests for internal modules.

Standardization

The W3C Multi-device Timing Community Group [https://www.w3.org/community/webtiming/] was created in 2015 to advocate standardization of the Timing Object as the core part of a much needed timing model for the Web.
As part of this initiative, a the Timing Object Draft Specification [http://webtiming.github.io/timingobject/] was published and timingsrc was created as a reference implementaion for this proposal.

Since then, the Multi-device Timing Community Group has been included within the scope of the Media and Entertainment Interest Group [https://www.w3.org/2011/webtv/], responsible for standardization of Web technologies related to media. Multi-device Timing is also included in the
roadmap [https://w3c.github.io/web-roadmaps/media/] of the interest group. Beyond this, the Media and Entertainment Interest Group has not yet addressed the gap concerning time controls across media components and frameworks.

Current standardization activities (2020) are still predominantly media centric as they mostly address synchronization relative to HTML5 media playback. As a general approach though, this is both limiting and short sighted, making it an unfortunate choice of timing model for the Web (see Media Synchronization on the Web [https://link.springer.com/chapter/10.1007/978-3-319-65840-7_17]).

The Timing Object is the foundation for a new timing model, opening up for synchronization and consistency across media sources, media types, media components or media frameworks. Also, crucially, this timing model expands the scope of synchronization and consistency from local media experiences (i.e. within a Web page) to globally distributed media experiences.

Though no formal steps have been taken with respect to standardization of the Timing Object, the timingsrc JavaScript implementation is ready to use. It has has been maturing through steady use since 2015, and recently it is seeing increased usage from Web programmers around the world, not least after Corona. It seems the boost of online activity is making issues with synchronization and consistency even more evident.

Note

The Timing Object Draft Specification [http://webtiming.github.io/timingobject/] has not been updated since its original publications, so deviations made by the timingsrc implementation have yet not been included.

Contributions

Authors

Ingar M. Arntzen

	mailto://inar@norceresearch.no

	mailto://ingar.arntzen@motioncorporation.com

	https://github.com/ingararntzen

	https://www.linkedin.com/in/ingararntzen/

Njål T. Borch

	mailto://njbo@norceresearch.no

	mailto://njaal.borch@motioncorporation.com

	https://github.com/snarkdoof

	https://www.linkedin.com/in/njaal-borch-5754a11/

Acknowledgements

Version 1 of timingsrc were developed at Norut Northern Research Institute [http://norut.no/], now part of Norwegian Research Centre (NORCE), and funded in part by MediaScape, an EU FP7 project.
Version 2 of timingsrc was developed and maintained across several media projects at NORCE. Version 3 is a private contribution by Ingar Arntzen.

Ingar Arntzen is the main developer for Timing Object, Timing Converter, Dataset and Sequencer. Njål Borch is the main developer for MediaSync, the adapter for synchronization of HTML5 media elements.

Demo TimingObject

This demonstrates control and rendering of the Timing Object.

	Control position, velocity or acceleration by clicking the buttons. P+1 means to increment the position. V=0 is to set the velocity to zero

	Position may also be controlled by clicking the progress timeline.

Demo

 Demo TimingConverter

Demo TimingConverter

This demonstrates a Timing Object and a Skew Converter.

	Control either one by clicking the buttons or the progress.

	Adjust the skew by clicking one of the set skew buttons.

Demo

 Demo TimingProvider

Demo TimingProvider

This is a demo of online synchronization, based on the Shared Motion Timing Provider.

	Opening this page on multiple devices (or browser tabs) simultaneously to verify consistency.

	Reloade the demo on one device/tab while the demo is running on others.

	Shared Motion Timing Provider is hosted online, so others might be playing with the demo too.

Demo

 Demo MediaSync

Demo MediaSync

Warning

The mediasync library currently has issues with Safari on iOS, presumably
due to some subtle changes concerning the media support on this platform.
Please try with another browser if you are having issues.

Demo

This is a demo of HTML5 video synchronization using the Timing Object.

	Skip to a different position by clicking the timeline progress.

 Demo Sequencer Point Mode

Demo Sequencer Point Mode

Sequencing timed data using a single Timing Object (see Point Mode).

	Data elements get activated (red) as the timingobject comes with their intervals (start, end).

	The set of active data elements is visualized just below the position.

	Skip to a different position by clicking the timeline progress.

	Remove data elements at any time by clicking the appropriate X button.

[image: ../_images/sequencer_point_mode.png]

Demo

 Demo Sequencer Interval Mode

Demo Sequencer Interval Mode

Sequencing timed data using two Timing Object (see Interval Mode).

	Data elements get activated (red) as their intervals (start, end) are overlapping with the interval between the two timing objects.

	The set of active data elements is visualized just below the position.

	Skip to a different position by clicking the timeline progress.

	Remove data elements at any time by clicking the appropriate X button.

[image: ../_images/sequencer_interval_mode.png]

Demo

 Timing Object

Timing Object

Contents

	Timing Object

	Introduction

	Definition

	Programming with Timing Objects

Introduction

<!DOCTYPE html>
<html>
 <head>
 <script type="module">
 import {
 TimingObject
 } from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
 const to = new TimingObject({range:[0,10]});
 </script>
 </head>
 <body></body>
</html>

The timing object is a simple concept representing timeline state (e.g. media offset) and timeline controls (e.g. play/pause). Similar constructs can be found in most media frameworks, yet typically they are internal to each framework. The main purpose of the timing object is rather to provide a generic timeline construct to be used across media frameworks (see Introduction).

Demo

See Demo TimingObject

As illustrated by the demo, the timing object is similar to an advanced stop watch. If started with a velocity, its position changes predictably in time, until at some point later, it is paused, or perhaps the position is reset. It may be queried for its current position at any time. For example, it should take exactly 2.0 seconds for the position to advance from 3.0 to 5.0, if the velocity is 1.0. The timing object supports discrete jumps on the timeline, which may be useful for controlling slide shows or playlists. Velocity is useful for the control of any linear/timed media, including continuous media such as audio and video. Acceleration may not be commonly required, but it is there if you need it. Crucially, the timing object provides a change event, emmitted every time its behavior has been altered. This allows timing sensitive components to quickly detect changes and respond by correcting their behaviour accordingly.

A draft specification [https://webtiming.github.io/timingobject/#the-timing-object] for the timing objects has been published with the W3C [https://www.w3.org/]. The timing object concept was first published under the name Media State Vector [https://dl.acm.org/doi/abs/10.1145/2457413.2457427].

Definition

Timing objects are logical clocks, defined by an internal clock and a vector.

	internal clock

	The internal clock of a timing object always counts seconds since some shared time origin. In timingsrc, the internal clock is based on performance.now [https://developer.mozilla.org/en-US/docs/Web/API/Performance/now]. The time origin of performance.now relates to the initialization of the Web page, so any timing object created within a single browsing context will all use the same internal clock. Note that this internal clock has no relation to any external clock. Note also that
performance.now returns timestamps in milliseconds, so values are converted to seconds within the timing object implementation.

	internal vector

	The internal vector describes the initial state of the current movement of the timing object; (position, velocity, acceleration, timestamp). The vector timestamp is from the internal clock of the timing object. Future states of the timing object may be calculated precisely from the initial vector and elapsed time. Timing object behaviour may easily be modified by supplying a new initial vector.

let vector = {
 position: 12.0, // position (units)
 velocity: 1.0, // velocity (units/second)
 acceleration : 0.0, // acceleration (units/second/second)
 timestamp : 7.234 // timestamp (seconds)
};

Timing objects may serve a variety of purposes within an application, so the value and unit of the timing object position is application specific. However, in the context of media applications position would typically be the duration since the beginning of some media session, in seconds.

	query

	The query operation of the timing object is a cheap calculation useful for periodic sampling. It returns a fresh vector snapshot, calculated from the internal vector.

function query(internal_clock, internal_vector) {
 let pos = internal_vector.position;
 let vel = internal_vector.velocity;
 let acc = internal_vector.acceleration;
 let ts = internal_vector.timestamp;
 let now = internal_clock.now();
 let delta = now - ts;
 return {
 position : pos + vel*delta + 0.5*acc*delta*delta,
 velocity : vel + acc*delta,
 acceleration : acc,
 timestamp : now
 };
}

	update

	The update operation of the timing object accepts a vector specifying new values for position, velocity and acceleration, used to reset the internal vector of the timing object. If say position is omitted from the new vector, this means to preserve position as it was just before the update request was processed.

// play, resume
to.update({velocity:1.0});

// pause
to.update({velocity:0.0});

// jump to 10 and play from there
to.update({position:10.0, velocity:1.0})

// jump to 10, keep current velocity
to.update({position:10.0})

	change event

	Whenever a timing object is updated, a change event is emitted from the
timing object. The change event represents the start of a new movement. By subscribing to change events, media frameworks and components may monitor the timinig object and implement timely reactions to changes in timing object behavior.

// handle change event
to.on("change", () => {
 let v = to.vector;
 let moving = (v.velocity != 0.0 || v.acceleration != 0.0);
 if (moving) {
 console.log("moving!");
 } else {
 console.log("not moving!");
 }
});

	timeupdate event

	For convencience, timing objects also provide an event for periodic sampling of the timing object. The timeupdate event is emitted at 5Hz (every 200 milliseconds) whenever the velocity (or acceleration) of the timing object is non-zero. So, if the timing object is paused, no events are emmitted util the timing object is unpaused.

// use timeupdate event to sample timing object position
to.on("timeupdate", function() {
 console.log(to.query().position);
});

Alternatively, if a different sampling frequency is required, a timing sampler may be used.

const sampler = new TimingSampler(to, {period:50});
sampler.on("change", function () {
 console.log(to.query().position);
});

	rangechange event

	Event triggeres whenever the range is changed.

Programming with Timing Objects

Timing objects are resources used by a Web application, and the programmer may define as many as required. What purposes they serve in the application is up to the programmer. If the application needs a shared clock, simply starting a timing object (and never stopping it) might be sufficient. If the timing object position should be milliseconds, set the velocity to 1000 (advances the timing object position with 1000 milliseconds per second). If the timing object represents media offset, specify the playback position, the velocity, and perhaps a media duration (range). For videos where offset is measured in seconds or frames, set the velocity accordingly. Or, for certain musical applications it may be practical to let the timing object position represent beats, given a fixed BPM (beats per minute). Note also that the timing object may represent time-changes with any kind of floating-point variable. For instance, if data is organized according to height above sea level, it might be appropriate to animate how data changes during continuous vertical movement. In this case the timing object could represent meters or feet above sea level, and positive and negative velocities would allow you to move gradually both upwards and downwards.

 Timing Converter

Timing Converter

Contents

	Timing Converter

	Introduction

	Definition

	Position-time diagrams

	Skew Converter

	Scale Converter

	Delay Converter

	Timeshift Converter

	Loop Converter

Introduction

<!DOCTYPE html>
<html>
 <head>
 <script type="module">
 import {
 TimingObject,
 SkewConverter
 } from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
 const to = new TimingObject({range:[0,10]});
 const c = new SkewConverter(to, 2);
 </script>
 </head>
 <body></body>
</html>

Timing converters are useful when you need an alternative representation for a Timing Object. For example, co-presentation of different media sources might be a problem if said media sources refer to different timelines. Given that the relation between the timelines is known, this can be solved by either of the following approaches.

	convert all timestamps of media sources to match the timeline of the timing object

	convert a timing object to match the timeline of each media source

The second approach is often most attractive, as converting timestamps in media data may often be inconvenient, costrly or otherwise undesireable. Simply converting the media clock is typically a much easier solution.

Demo

See Demo TimingConverter

So, as the name suggests, timing converters convert timing objects, for instance by skewing or scaling the timeline of the original timing object.
This may be useful in video playback, where the position of a timing object typically represents media offset in seconds. In this case, a timing converter could be used to create and alternative representation based on frame numbers, with playback velocity set to 24 or 25 frames per second (fps), depending on the media format. Or, for music it might be sensible to use beat number as position, and beats per second (bps) as velocity.

Definition

A Timing Converter provides an alternative representation for a Timing Object.

	a timing converter is a timing object, which also depends on a parent timing object.

	the timingsrc property of a Timing Converter identifies its parent timing object.

	a timing converter implements some modification relative to its timingsrc, but never modifies its timingsrc in any way.

	multiple timing converters may share timingsrc.

	a timing converter can itself be the timingsrc of another timing converter.

	a timing converter may forward update requests to the parent, converting the request into the parent timeline if necessary.

So, a chain or hierarchy of timing converters may be created, where all timing converters ultimately depend on a common timing object as root. Each timing converter typically provides a single modification. More complex modifications may for instance be created by combining multiple timing converters.

Position-time diagrams

[image: ../_images/noconvert.jpg]
Position-time diagrams are helpful for illustrating the behavior of timing objects and timing converters. In the above figure, the x-axis (horizontal) is time, and the y-axis (vertical) is the position of the timing object. The figure illustrates a sequence of 4 updates to the timing object, where each circle is denoted by a circle. Initially (time 0) the position of the timing object is 0.

	start the timing object (positive velocity). The position increases linearly.

	pause the timing object. Position remains unchanged.

	starts the timing object backwards (negative velocity). Position decreases linearly.

	pause the timing object at the exact moment when position becomes 0. (This may for instance be enforced by the timing object itself, as a range restriction.)

Skew Converter

[image: ../_images/skewconvert.jpg]
The effect of the skew converter is illustrated with red coloring. A positive skew is supplied, shifting all positions in the positive direction.

Scale Converter

[image: ../_images/scaleconvert.jpg]
Scaling the by a factor means that all values (position, velocity and acceleration) are multiplied by that factor.

For example, a factor 1000 scales values in seconds to values in milliseconds. Velocity 1s/s becomes velocity 1000ms/s.

Delay Converter

[image: ../_images/delayconvert.jpg]
Delay converter re-plays the behaviour of the timing object, with a fixed delay. Update events are delayed too. Delay converters are read-only in the sence that they do not accept update requests.

Timeshift Converter

[image: ../_images/timeshiftconvert.jpg]
Timeshift converter timeshifts the behavior of the timing object. Red color is ahead in time (speculative). Blue color is after in time. When the position is static, time-shifting has no effect. The Timeshift converter does not timeshift update events.

Loop Converter

[image: ../_images/loopconvert.jpg]
The two dotted black lines illustrate a range restriction for the loop converter. When the timing object is inside this range, the loop converter will be equal to the timing object. When the timing object is outside, its position is translated to a value within the range, i.e. modulo of range length.

 Timing Provider

Timing Provider

Contents

	Timing Provider

	Introduction

	External timing

	Custom Timing Providers

	Timing Provider Functionality

	Shared Motion Timing Provider

Introduction

// assign timing provider to timingsrc property of timing object
to.timingsrc = timing_provider;

A Timing Provider is a proxy object for a remote timing resource. Remote timing resources exist outside the Web page (i.e. browsing context) of the timing object. The remote timing resource might live in another process on the same computer or on a remote server. By acting as proxy, timingprovider objects allow a Timing Object to be connected to a remote timing resource. If the remote timing resource is hosted online, this opens up for consistent media control in the global scope.

Demo

See Demo TimingProvider

External timing

The timingsrc programming model is based on the idea that consistency and shared media control is achieved by shared access to timing objects. This idea is the focus of the Introduction, where timing objects are proposed for consistency across media frameworks within a single Web page. Importantly, with online timing resources, this idea can be extended to globally shared media experiences, without imposing additional complexity on the developers, see Media Synchronization on the Web [https://link.springer.com/chapter/10.1007/978-3-319-65840-7_17]. As such, timing providers extend the scope of the timingsrc programming model from local to global.

Custom Timing Providers

It might be possible to derive a standardized protocol for communication with remote timing services. However, in the interest of future innovation this approach was not recommended by the Timing Object Draft Specification [http://webtiming.github.io/timingobject/]. Instead, the proposal defines an API for timing provider proxy objects, opening up for custom implementations of timing services and assiciated timing providers. This decoupling between specific timing services and application code maximizes flexibilty, with the Timing Object as an in-between mediator.

Timing Provider Functionality

A timing provider (TP) runs client-side and exchanges messages between a client-side timing object (TC) and a remote timing service (TS). In particular, TP will forward update request vectors from the timing object TS to the remote timing service TS, and receive asynchronous notifications of vector updates in the opposite direction.

The overall goal is that timing objects connected to the same remote timing resorces are always equal. If queried at the same time, all timing objects should yield the same results in terms of position, velocity and acceleration.

This though is not straight forward, since the clocks used by the remote timing service and timing objects (see Timing Object) are generally not the same. To solve this, clock timestamps must be converted back and forth via a shared clock, typically the clock of the remote timing resource. To do this conversion, the skew between the clocks must be estimated:

Important

TS_CLOCK = TC_CLOCK + SKEW

The idea is that timing providers implement skew estimation, which can then be used by the timing object to do the necessary conversions. This way, implementing a timing provider proxy object is reasonably easy.

	Provide an estimate for SKEW. P must have access to TC_CLOCK. An estimate for TS_CLOCK must be obtained by live messaging with TS. Likely, the SKEW estimate should be updated periodically to account for clock drift or adjustments made to system clocks (e.g. NTP clock synchronization).

	Forward request update vector from TC to TS, unchanged.

	Forward notification update vector from TS to TC, unchanged.

Note

Direct forwarding of update notification in 3) implies that
there is no mechanism for ensuring that vector updates are applied at exactly the same time. Importantly though, updates will eventually have the same effect even if they are not applied at the same time. Inconsistencies are limited to the brief duration when one timing object has received an update while another has not. This is rarely noticed in practice.

Shared Motion Timing Provider

Shared Motion is provided by Motion Corporation [http://motioncorporation.com] through InMotion, a generic, online timing service for IP-connected clients and Web agents. Shared Motion by Motion Corporation can be used directly with the Timing Object. To test this please follow these simple steps:

1. Create MCorp App

	goto https://dev.mcorp.no

	create MCorp App

	MOTION_NAME: create a named motion inside your app

	APPID: copy the APPID from your MCorp App

2. Connect Timing Object to Shared Motion

<!DOCTYPE html>
<html>
 <head>
 <script type="text/javascript" src="http://www.mcorp.no/lib/mcorp-2.0.js"></script>
 <script type="module">
 import {
 TimingObject
 } from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
 const to = new TimingObject();
 const app = MCorp.app("APPID", {anon:true});
 app.ready.then(function() {
 to.timingsrc = app.motions["MOTION_NAME"];
 });
 </script>
 </head>
 <body>
 </body>
</html>

Documentation for MCorp App initialization at https://dev.mcorp.no

 MediaSync

MediaSync

Contents

	MediaSync

	Introduction

	Reservations

Introduction

<!DOCTYPE html>
<html>
 <head>
 <script src="https://mcorp.no/lib/mediasync.js"></script>
 <script type="module">
 import {
 TimingObject
 } from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";
 const to = new TimingObject({range:[0,100]});
 const sync = MCorp.mediaSync(document.getElementById('player'), to);
 </script>
 </head>
 <body>
 <video id="player" autoplay></video>
 </body>
</html>

MediaSync is JavaScript wrapper for HTML5 media elements, allowing precisly timed playback and control for audio and video on the Web, using the Timing Object. This is achived by adjusting the offset of the media element so that it always matches the the timing object. The wrapper code periodically compares currentTime property of the media element with the position of the timing object. If the difference grows too large, larger adjustments are implemented by seekTo operations whereas more gradual corrections are achived by modifications to the playbackrate.

Demo

See Demo MediaSync

MediaSync is a common purpose library. It is not optimised for any particular combination of OS, media codecs or browser implementation. Despite this, and despite a number weaknesses in HTML5 media elements with respect to precisely timed playback, MediaSync demonstrates the feasibility of echoless synchronization across the Internet. See for instance this demonstration [https://www.youtube.com/watch?v=lfoUstnusIE] on YouTube. A technical report evaluating synchronization of HTML5 media elements is available here [https://docs.google.com/document/d/1d2P3o3RZmilBx1MzMFFDDj5JnF8Yoi-t9EkJKzV90Ak/edit?usp=sharing].

The MediaSync JavaScript library is maintained by Motion Corporation [https://www.motioncorporation.com/] and may be downloaded from their site: https://mcorp.no/lib/mediasync.js.

Reservations

Support for precise synchronization of HTML5 media is experimental and subject to certain reservations.

	Codecs and format issues are notorious for audio and video on the Web, and certain options/combinations may hurt the ability for precise synchronization.

	Synchronization of live media streams is possible, but depends on the session timeline being correctly tied to the media content timeline. In particular, if the media player starts from currentTime 0 whenever the viewer session starts, session timeline and content timeline are independent. If so, synchronization is not possible, unless the relation between the two timelines may be derived by other means.

	Repeated buffering due to limited data access is not a great starting point for precise synchronization.

	Media capabilities vary accross platforms, and platform specific media issues may impact the support for precise synchronization. For instance, IOS devices have issues with the implementation of variable playbackrate.

	Stricter autoplay policies in Web browsers may require user involvement becore any playback can start.

	Capability for precisely time controlled playback is currently not required (or even recommended) by W3C standards. For this reason, synchronization performance is not evaluated and new browser versions may therefore include sudden changes that affect synchronization (for better or worse).

	Timed media playback requires a short initializion phase before precise and stable playback can be achieved. This is expected to take 0-3 seconds, and allows the media element to load data and home in on the correct playback offset. If precicely timed playback is needed from the very start, one trick could be to pad the media content with a preamble, allowing synchronization to be started a little earlier. In this case it might be attractive to hide the media element until the original starting point is reached.

 Interval

Interval

Contents

	Interval

	Introduction

	Definition

	Endpoint Types

	Endpoint Ordering

	Interval Comparison

	Interval Match

Introduction

Interval is used by Dataset and Sequencer to define the
validity of objects or values in relation to a timeline. Intervals
describe either a continuous line segment or a singular point. In
the context of media, intervals define the temporal validity of timed
media content.

Definition

Following standard mathematical notation intervals are expressed by two
endpoint values low and high, where low <= high. Interval
endpoints are either open or closed, as indicated with brackets
below:

e.g.: [a,b] [a,b) (a,b] (a,b)

If low == high the interval is said to represent a singular point [low,
high], or simply [low] for short. Endpoints of singular point intervals are
always closed.

Infinity values may be used to create un-bounded intervals. Endpoints with
infinite values are always closed.

e.g.: [a, Infinity] [-Infinity, a] [-Infinity, Infinity].

// [4.0] - singular point
itv = new Interval(4.0);

// [4.0] - singular point
itv = new Interval(4.0, 4.0);

// [4,6.1) - interval
itv = new Interval(4.0, 6.1, true, false);

// (4,6.1) - interval
itv = new Interval(4.0, 6.1, false, false);

// [4,6.1] - interval
itv = new Interval(4.0, 6.1, true, true);

// (4,6.1] - interval
itv = new Interval(4.0, 6.1, false, true);

// [4,6.1) - default endpoints
itv = new Interval(4.0, 6.1);

// [4,->] - un-bounded
itv = new Interval(4.0, Infinity);

Note

Knowing how to create intervals is likely sufficient for basic usage
of Dataset and Sequencer. The rest of this section provides
a reference for advanced usage and details concerning ordering
and comparison of intervals on a timeline.

Endpoint Types

Intervals are defined as a pair of interval endpoints. The table below
shows that there are four distinct types of endpoints, and that
endpoints have three distinct properties

	value: numerical value

	bracket-side: true if high else low

	bracket-type: true if closed else open

	symbol

	name

	value

	bracket-side

	bracket-type

	[a

	low-closed

	a

	false

	true

	(a

	low-open

	a

	false

	false

	a]

	high-closed

	a

	true

	true

	a)

	high-open

	a

	true

	false

Singular intervals have two endpoints [a and a], even though they only
have one value. In order to distinguish endpoints of a singular interval, boolean flag singular is added to the representation.

Endpoints are therefor represented by a four-tuple

[value, bracket-side, bracket-type, singular].

Endpoint Ordering

Correct ordering of points and endpoints is important for consistency of
media state, media navigation and playback. Ordering is straight forward
as long as endpoint values are different in value. For instance, 2.2]
is ordered before (3.1 because 2.2 < 3.1. However, in case of
equality, sensitivity to properties bracket-side,
bracket-type and singular is required to avoid ambiguities.

The internal ordering of point p and the four endpoint types with value
p is, from left to right:

p), [p, p, p], (p

Or, by name:

high-open, low-closed, value, high-closed, low-open

Endpoints of singular intervals are orders as regular values.

Based on this ordering we may define the comparison operators lt(e1, e2)
and gt(e1, e2), where e1 and e2 are either endpoints or regular
points values.

lt(e1, e2) returns true if e1 is before e2,
and false if e1 is equal to or after e2.

gt(e1, e2) returns true if e1 is after e2,
and false if e1 is equal to or before e2.

Interval Comparison

Intervals may overlap partly, fully, or not at all. More formally, we define
interval comparison in terms of interval relations:

The operator cmp(a, b) compares interval a to interval b. The
comparison yields one of seven possible relasions: OUTSIDE_LEFT,
OVERLAP_LEFT, COVERED, EQUAL, COVERS, OVERLAP_RIGHT, or OUTSIDE_RIGHT.

[image: ../_images/interval_compare.png]

This illustrates the different interval relations yielded by cmp(a,b)
when seven diffent intervals A are compared to the same interval B.

The cmp(a,b) operator is then defined in terms of simpler operators
lt, gt and inside. The operator inside(e, i) evaluates
to true if a point or an endpoint e is inside interval i. Interval i
is in turn defined by its two endpoints i.low and i.high.

inside(e, i) = !lt(e, i.low) && !gt(e, i.high)

Interval relations OUTSIDE_LEFT, OVERLAP_LEFT, COVERED, EQUAL, COVERS,
OVERLAP_RIGHT and OUTSIDE_RIGHT are defined as follows:

	cmp(a, b)

	description

	definition

	OUTSIDE LEFT

	a is outside b on the left

	
	a.high lt b.low

	OVERLAP LEFT

	a overlaps b from left

	
	a.high is inside b

	a.low is gt b.low

	a.high is lt b.high

	COVERED

	a is covered by b

	
	a.low inside b && a.high inside b

	b.low !inside a || b.high !inside a

	EQUAL

	a is equal to a

	
	a.low inside b && a.high inside b

	b.low inside a && b.high inside a

	COVERS

	a covers b

	
	a.low !inside b || a.high !inside b

	b.low inside a && b.high inside a

	OVERLAP RIGHT

	a overlaps b from right

	
	a.low is inside b

	a.low is gt b.low

	a.high is gt b.high

	OUTSIDE RIGHT

	a is outside b on the right

	
	a.low gt b.high

Here are a few examples of comparisons between intervals a and b.

	a

	b

	cmp(a, b)

	[2,4>

	[4]

	OUTSIDE_LEFT: a is outside b on the left

	[2,4>

	<2,4]

	OVERLAP_LEFT: a overlaps b from left

	[2,4>

	[2,4]

	COVERED: a is covered by b

	[2,4>

	[2,4>

	EQUAL: a is equal to b

	[2,4>

	<2,4>

	COVERS: a covers b

	[2,4>

	<1,3>

	OVERLAP_RIGHT: a overlaps b from right

	[2,4>

	<1,2>

	OUTSIDE_RIGHT: a is outside b on the right

Interval Match

The operation match(a, b, mask) returns true if interval a matches
interval b. mask defines what interval relations are accepted as a
match. Each interval relation is associated with a mask value. Multiple
relations may then be be aggregated (AND’ed) into the appropriate mask.

	mask

	int

	relation

	0b1000000

	64

	OUTSIDE_LEFT

	0b0100000

	32

	OVERLAP_LEFT

	0b0010000

	16

	COVERED

	0b0001000

	8

	EQUALS

	0b0000100

	4

	COVERS

	0b0000010

	2

	OVERLAP_RIGHT

	0b0000001

	1

	OUTSIDE_RIGHT

The default value of match mask is 62 (0b0111110), which implies
that all relations except OUTSIDE_LEFT and OUTSIDE_RIGHT are counted
as a match.

 Cue

Cue

A Cue is a triplet (key, interval, data) represented by a
simple Javascript object.

let cue = {
 key: "mykey",
 interval: new Interval(2.2, 4.31),
 data: {...}
};

	key

	Unique key. Any value or object that may be used as a key with
Map. The purpose of cue key is to uniquely identify a cue object
within a collection of cue objects.

	interval

	Defines the validity of the cue
in reference to a numerical dimension, typically a timeline. Intervals
represent a contiguous segment on the timeline or
singular points (see Interval).

	data

	The data property is an externally defined value or object associated
with the cue. Typically, cue properties key and interval are
derived from values within the cue data object
(see Cue Creation).

Cue Creation

Cues are typically created by wrapping application-defined data objects. These objects often include properties which define object uniqueness, within some application specific namespace. Property names such as id, key and uuid are often used for this purpose. If so, such object identifiers may be used as cue keys.

Additionally, application objects may define timestamps, durations or
other numerical values indicating the validity of the object in reference
to a timeline. Property names such as ts, start, end and
duration are often used for this purpose. If so, cue interval
objects may be created from these values.

// application object
let subtitle = {
 id: 1234,
 text: "This is some text",
 start: 24.3,
 end: 28.7
};

// cue from application object
let cue = {
 key: subtitle.id,
 interval: new Interval(subtitle.start, subtitle.end);
 data: subtitle
};

 Cue Collection

Cue Collection

Contents

	Cue Collection

	Introduction

	Events

	Cue Ordering

Introduction

Cue Collection specifies an interface for a collection of (key, cue) pairs, extended with events.

Cue collection emulates the Javascript Map API by defining methods has(), get(), keys(), values() and entries(). Also, the number of (key,cue) pairs managed by the cue collection is exposed by the property size.

Cue collection also defines three events: batch, change and
remove. Events allow modifications of the cue collection to be
detected by subscribers. Events are implemented as defined in Events.

Note

The Cue Collection interface is only read-only and does not specify any mechanisms for modifying the collection of (key, value) pairs.
Methods for modification are left for specific implementations of
the interface, such as Dataset and Sequencer.

Events

Modification Types

Cue collection supports two types of modifications:
membership-modifications and cue-modifications:

	membership-modifications

	Cues inserted into or deleted from the cue collection.

	cue-modifications

	Modification of cues in cue collection.

Change and Remove

Cue collection defines events change and remove. Each event
report modifications concerning an single (key, cue) pair.

	change

	
	inserted cues (membership-modification)

	modified cues (cue-modification)

	remove

	
	deleted cues (membership-modification)

// cue collection
let cc;

cc.on("change", function(eArg) {
 console.log("change")
});

cc.on("remove", function(eArg) {
 console.log("remove")
});

Note

It would also have been possible to expose three events
(insert, modify, delete) instead of two events (change, remove). However, the latter is often more convenient, as insert and modify events are frequently handled the same way. On the other hand, if the distincion matters the event argument of the change event may be used to tell them apart. See Event Argument.

Batch Event

Cue collection additionally defines a batch event which delivers
multiple change and remove together. This is
relevant for implementations supporting modification of multiple cues in
one (atomic) operation. If so, the batch event makes
it possible to process concurrent events in one operation, and making decisions based on the whole batch, as opposed to single events.

The event argument eArg of the batch event is simply a list of
event arguments for individual change and remove events.

// cue collection
let cc;

cc.on("update", function (eArgList) {
 eArgList.forEach(function(eArg) {
 if (eArg.new != undefined) {
 if (eArg.old != undefined) {
 console.log("modify");
 } else {
 console.log("insert");
 }
 } else {
 if (eArg.old != undefined) {
 console.log("delete");
 } else {
 console.log("noop");
 }
 }
 });
});

Note

Cue collection may emit a batch event including event arguments
where both eArg.new and eArg.old are undefined,
i.e. noop events.

Event Argument

Cue collection events provide an event argument eArg describing
the modification of a single cue. The event argument is a simple
object with properties key, new and old:

// Event Argument
let eArg = {key: ..., new: {...}, old: {...}}

	key

	key (unique in cue collection)

	old

	cue before modification, or undefined if cue was inserted.

	new

	cue after modification, or undefined if cue was deleted.

This table show values eArg.old and eArg.new
may assume for different events and modification types.

	modification

	event

	eArg.old

	eArg.new

	insert

	change

	undefined

	cue

	modify

	change

	cue

	cue

	delete

	remove

	cue

	undefined

	noop

	
	undefined

	undefined

Distinguishing between modification types is easy:

// cue collection
let cc;

cc.on("change", function(eArg) {
 if (eArg.old == undefined) {
 console.log("insert");
 } else {
 console.log("modify");
 }
});

cc.on("remove", function(eArg) {
 console.log("delete")
});

Cue Ordering

By default cue collections do not enforce a particular ordering for its (key, cue) pairs. If needed, order may be specified on the constructor. The cues() method will then returne an ordered list of cues. In addition, cue events will be delivered in the correct order. Ordering options may also be supplied directly to the CueCollection.cues() and will take precedence over constructor options. This applies for both Dataset and Sequencer, which are both cue collactions.

// order by keys
function cmp(cue_a, cue_b) {
 return cue_a.key < cue_b.key;
}

let cc = new CueCollection({order:cmp})

// unordered iterator of cues
let cues_iterator = cc.values()

// ordered list of cues
let cues_list = cc.cues();

 Dataset

Dataset

Contents

	Dataset

	Introduction

	Example

	Update

	Update Convenience Methods

	Lookup

	Events

	Cue Ordering

	Performance

Introduction

Dataset manages a collection of cues, implements the
Cue Collection and adds support for flexible and efficient cue
modification and lookup, even for large volumes of cues.
Cues are simple Javascript objects:

let cue = {
 key: "mykey",
 interval: new Interval(2.2, 4.31),
 data: {...}
}

Dataset maps keys to cues, like a Map. In addition, cues
are also indexed by their positioning on the timeline (see Interval), allowing efficient search along the timeline. For instance, the lookup method returns all cues within a given lookup interval.

Dataset is useful for management and visualization of large datasets with timed
data, represented as cues. Typical examples of timed data
include log data, user comments, sensor measurements, subtitles, images,
playlists, transcripts, gps coordinates etc.

Furthermore, the dataset is carefully designed to support
precisely timed playback of timed data. This is achieved by connecting
one or more Sequencers to the Dataset.

[image: ../_images/timed_data.png]

This illustrates multiple tracks (different colors) of timed data.
Each colored line segment is a cue, with horizontal placement and length
indicating cue validity in reference to the timeline.
Tracks may simply be different types of cues, e.g. comments,
gps-coordinates, videos, images, audio snippets, etc. A single dataset
may hold all kinds of cues, collectively defining the state of a
media presentation, see Linear Media State.

Example

// create dataset
let ds = new Dataset();

// timed data
let subtitles = [
 {
 id: "1234",
 start: 123.70,
 end: 128.21,
 text: "This is a subtitle"
 },
 ...
];

// create cues from subtitles data
let cues = subtitles.map(function (sub) {
 let itv = new Interval(sub.start, sub.end);
 return {key: sub.id, interval: itv, data: sub};
});

// insert cues
ds.update(cues);

// lookup cues
let result_cues = ds.lookup(new Interval(120, 130));

// delete cues
ds.update(cues.map(function(cue) {
 return {key: cue.key};
});

Update

Dataset provides a single operation update(cues) allowing cues
to be inserted, modified and/or deleted. The argument
cues defines a list of cue arguments (or a single cue argument) to be
inserted into the dataset. If a cue with identical key already
exists in the dataset, the pre-existing cue will be modified to
match the provided cue argument. If a cue argument includes a key but no
interval and no data, this means to delete the pre-existing cue.

let ds = new Dataset();

// insert
ds.update({
 key: "key1",
 interval: new Interval(2.2, 4.31),
 data: "foo"
});

// modify
ds.update({
 key: "key2",
 interval: new Interval(4.4, 6.9, false, false),
 data: "bar"
});

// delete
ds.update({key: "mykey"})

For convenience, intervals in cue arguments may also be specified as an array, leaving it to the dataset to create Interval objects for internal use. Also, addCue and removeCue methods provide shorthand access to update. For instance, the above code example may be rewritten as follows:

let ds = new Dataset();
ds.addCue("key1", [2.2, 4.31], "foo");
ds.addCue("key2", [4.4, 6.9, false, false], "bar");

See also Update Convenience Methods for more details.

Cue Management

When a cue is inserted into the dataset, it will be managed
until it is deleted at some later point. All cue access
operations (e.g. cues, lookup) provide direct access to managed cues.

Warning

Cues managed by dataset are considered immutable and must
never be modified directly by application code. Always use the
update operation to implement cue modification.

If managed cue objects are modified by external code, no guarantees
can be given concerning functional correctness. By default, the dataset does not offer any protection against external cue modification. However,
in safe mode Object.freeze() is applied to all cues, implying that attempted modification should throw an exception (strict mode). This is useful for evaluation but should likely be turned off in production, as use of Object.freeze() comes with a performance penalty.

let ds = new Dataset({safe:true})

Important

	always create cue arguments as new objects with desired state

	never reuse managed cue objects as arguments to update

The dataset will throw an exception if a currently managed cue
object is used as cue argument with the update operation.

Unwanted modifications of managed cues may also occur if the cue.data
property is subject to external modification. Object.freeze() does not protect against this. For instance, the data object may a reference to an object which is managed by an application specific data model. If this is the case one approach would be to copy data objects as part of cue creation. Another approach is to add one level of indirection, adding only immutable object id’s to the dataset. This though would imply that data changes can not be detected by the dataset.

Cue Arguments

Dataset also supports partial cue modification. Partial
modification means to modify only the cue interval property or only the cue data property. For convenience, partial cue modification allows this to be done without restating the unmodified part of the cue. Partial cue
modification is specified simply by omitting the property which is not
to be replaced. The omitted property will then be preserved from the
pre-existing cue. This yields four types of legal cue arguments for the
update operation:

	Type

	Cue argument

	Text

	A

	{key: “mykey”}

	no interval, no data

	B

	{key: “mykey”, interval: …}

	interval, no data

	C

	{key: “mykey”, data: …}

	no interval, data

	D

	{key: “mykey”, interval: …, data: …}

	interval, data

Note

Note that {key: "mykey"} is type A whereas {key: "mykey",
data:undefined} is type C. The type evaluation is based on
cue.hasOwnProperty("data") rather than cue.data ===
undefined. This ensures that undefined may be used as a data
value with cues.

Similarly, cue intervals may also take the value undefined.
Without an interval cues become invisible to the lookup
operation, yet still accessible through Map operations
has, get, keys, values, entries. Otherwise, if cue interval is
defined, it must be an instance of the Interval class.

Note

Cue intervals are often derived from timestamps which are also part of
cue data. This implies that inconsistency may be introduced, if the
interval is changed, without also changing the associated timestamps
in the data property – or the other way around.

Though not criticial for the integrity of the dataset, such inconsistencies might be confusing for users. For instance if timeline playback does not match timestamps in cue data.

Rule of thumb:

	Avoid cue type B modification if timestamps are part of data.

	Similarly, avoid type C modification of timestamps in data, if
cue intervals are derived from these timestamps.

In summary, the different types of cue arguments are interpreted
according to the following table.

	Type

	Cue NOT pre-existing

	Cue pre-existing

	A

	NOOP

	DELETE cue

	B

	INSERT interval, data undefined

	MODIFY interval, PRESERVE data

	C

	INSERT data, interval undefined

	MODIFY data, PRESERVE interval

	D

	INSERT cue

	MODIFY cue

Cue Equality

Cue modification has no effect if cue argument is equal to the
pre-existing cue. The dataset will detect equality of cue intervals and avoid unneccesary reevaluation of internal indexes.
However, the definition of object equality for cue data may be
application dependent. For this reason the update operation allows a
custom equality function to be specified using the optional parameter
equals. Note that the equality function is evaluated with the cue data
property as arguments, not the entire cue.

function equals(a, b) {
 ...
 return true;
}

ds.update(cues, {equals:equals});

The default equality function used by the dataset is the following:

function equals(a, b) {
 // Create arrays of property names
 let aProps = Object.getOwnPropertyNames(a);
 let bProps = Object.getOwnPropertyNames(b);
 let len = aProps.length;
 let propName;
 // If properties lenght is different => not equal
 if (aProps.length != bProps.length) {
 return false;
 }
 for (let i=0; i<len; i++) {
 propName = aProps[i];
 // If property values are not equal => not equal
 if (a[propName] !== b[propName]) {
 return false;
 }
 }
 // equal
 return true;
}

Given that object equality is appropriately specified, update operations may safely be repeated, even if cue data have not changed. For instance,
this might be the case when an online source of timed data is polled repeatedly for updates. Results from polling may then be
forwarded directly to the update operation. The return value
will indicate if any actual modifications occured.

Update Result

The update operation returns an array of items describing the effects
for each cue argument. Result items are identical to event arguments
eArg defined in Event Argument.

// update result item
let item = {key: ..., new: {...}, old: {...}}

	key

	Unique cue key

	old

	Cue before modification, or undefined if cue was inserted.

	new

	Cue after modification, or undefined if cue was deleted.

It is possible with result items where both item.new and
item.old are undefined. For instance, this will be the case if a cue is
both inserted and deleted as part of a single update operation (see
Batch Operations).

Batch Operations

The update() operation is batch-oriented, implying that
multiple cue operations can be processed as one atomic operation. A
single batch may include a mix of insert, modify and delete
operations.

let ds = new Dataset();

let cues = [
 {
 key: "key_1",
 interval: new Interval(2.2, 4.31),
 data: "foo"
 },
 {
 key: "key_2",
 interval: new Interval(4.4, 6.9),
 data: "bar"
 }
];

ds.update(cues);

Batch oriented processing is crucial for the efficiency of the
update operation. In particular, the overhead of reevaluating
internal indexes may be paid once for the accumulated effects of the
entire batch, as opposed to once per cue modification.

Warning

Repeated invocation of update within a single processing task
is an anti-pattern with respect to performance! Cue operations
should if possible be aggregated and applied together as a single batch.

// cues
let cues = [...];

// NO!
cues.forEach(function(cue)) {
 ds.update(cue);
}

// YES!
ds.update(cues);

Cue Chaining

It is possible to include several cue arguments concerning the same key
in a single batch to update. This is called chained cue arguments.
Chained cue arguments will be applied in the given order, and the net effect
in terms of cue state will be equal to the effect of splitting the cue
batch into individual invokations of update. Internally,
chained cue arguments are collapsed into a single cue operation with the
same net effect. For instance, if a cue is first inserted and then
deleted within a single batch, the net effect is no effect.

Correct handling of chained cue arguments introduces an extra test
within the update operation, possibly making it slightly
slower for very large cues batches. If the cue batch is known to not include any chained cue arguents, this may be indicated by setting the option
chaining to false. The default value
for chaining is true.

ds.update(cues, {chaining:false});

Warning

If the chaining option is set to false, but the cue batch still
contains chained cue arguments, this violation will not be detected.
The consequences are not grave. The old value of result items and event arguments will be incorrect for chained cues.

Update Convenience Methods

The dataset defines a few convenience methods for updating the dataset implemented on top of the basic update primitive. Single cue operations addCue for inserting or modifying a cue and removeCue to delete a cue. These operations support Batch Operations through repeated invocation. Cue arguments will be buffered by an internal builder object and submitted as a single update operation on the dataset, just after the current JS task has completed. The result from the update operation is availble on a updateDone promise.

ds
 .addCue("key_1", new Interval(1,2), data)
 .removeCue("key_2")
 .addCue("key_1", new Interval(1,3), data);

ds.updateDone.then((result) => {console.log(result)});

Note

Once resolved, the updateDone promise is replaced by a new promise for the next update operation, but still available on the same updateDone property. So, for later update results just access the updateDone getter property again.

function show_result(update_result) {
 console.log("update result");
}

ds.updateDone.then(show_result);
ds.addCue("k", new Interval(612, 10000), "k")

setTimeout(() => {
 ds.addCue("l", new Interval(614, 10000), "l");
 ds.updateDone.then(show_result);
}, 1000);

To specify options for Batch Operations use a custom builder object.

let options;
let builder = ds.makeBuilder(options);

builder.updateDone.then(()=>{console.log("result")});
builder
 .addCue("key_1", new Interval(1,2), data);
 .removeCue("key_2");
 .clear();

Tip

For interactive use _addCue and _removeCue avoid buffering cue arguments by using the update primitive directly.

let update_result = ds._addCue("key_1", new Interval(1,2), data);

Lookup

The operation lookup(interval, mask) identifies all cues matching
a specific interval on the timeline. The parameter interval
specifices the target interval and mask defines what interval
relations count as a match, see Interval Match. Similarly, dataset provides an operation lookup_delete(interval, mask) which deletes all cues matching a given interval. This operation is more efficient
than lookup followed by cue deletion using update.

Lookup endpoints

In addition to looking up cues, dataset also supports looking up
cue endpoints. The operation lookup_endpoints(interval) identifies all cue endpoints inside the given interval, as defined in Interval Comparison. The operation returns a list of (endpoint, cue) pairs, where endpoint is the low or the high endpoint
of the cue interval.

{
 endpoint: [value, high, closed, singular],
 cue: {
 key: "mykey",
 interval: new Interval(...),
 data: {...}
 }
}

The endpoint property is defined in Endpoint Types.

Events

Dataset supports three events batch, change and remove,
as defined in Cue Collection.

Cue Ordering

See Cue Ordering.

Performance

The dataset implementation targets high performance with high volumes
of cues. In particular, the efficiency of the lookup operation is
important as it is used repeatedly during media playback. The
implementation is therefor optimized with respect to fast
lookup, with the implication that internal costs related to indexing
are paid by the update operation.

The lookup operation depends on a sorted index of cue endpoints, and
sorting is performed as part of the update operation. For this
reason, update performance is ultimately limited by sorting
performace, i.e. Array.sort(), which is O(NlogN) (see sorting
complexity [https://blog.shovonhasan.com/time-space-complexity-of-array-sort-in-v8/]). Importantly, support for batch operations
reduces the sorting overhead by ensuring that sorting is
needed only once for a each batch operation, instead of repeatedly for
every cue argument. The implementation of lookup uses binary search
to identify the appropriate cues, yielding O(logN)
performance. The crux of the lookup algorithm is to resolve the cues
which COVERS (see :ref:’interval-comparison’) the lookup interval in sub linear time.

To indicate the performance metrics of the dataset, some measurements have
been collected for common usage patterns. For this particular test a
standard laptop computer is used (Lenovo ThinkPad T450S, 4 cpu Intel
Core i5-53000 CPU, Ubuntu 18.04). Tests are run with Chrome and Firefox,
with similar results. Though results will vary between systems, these
measurements should at least give a rough indication.

Update performance depends primarily the size of the cue batch, but also
a few other factors. The update operation is more efficient if the
dataset is empty ahead of the operation. Also, since the update
operation depends on sorting internally, it matters if the cues are
mostly sorted or random order.

Tests operate on cue batches of size 100.000 cues, which corresponds to
200.000 cue endpoints. Results are given in milliseconds.

	INSERT

	100.000 sorted cues into empty dataset

	278

	INSERT

	100.000 random cues into empty dataset

	524

	INSERT

	100.000 sorted cues into dataset with 100.000 cues

	334

	INSERT

	100.000 random cues into dataset with 100.000 cues

	580

	INSERT

	10 cues into dataset with 100.000 cues

	2

	LOOKUP

	100.000 endpoints in interval from dataset of 100.000 cues

	74

	LOOKUP

	20 endpoints from dataset with 100.000 cues

	1

	LOOKUP

	50.000 cues in interval from dataset of 100.000 cues

	80

	LOOKUP

	10 cues in interval from dataset of 100.000 cues

	1

	LOOKUP_DELETE

	50.000 cues in interval from dataset with 100.000 cues

	100

	LOOKUP_DELETE

	10 cues in interval from dataset with 100.000 cues

	1

	DELETE

	50.000 random cues from dataset with 100.000 cues

	280

	DELETE

	10 random cues from dataset with 100.000 cues

	10

	CLEAR

	Clear dataset with 100.000 cues

	29

The results show that the dataset implementation is highly efficient
for lookup operations and update operations with modest cue
batches, even if the dataset is preloaded with a large volume of cues
(100.000). In addition, (not evident from this table) update
behaviour is tested up to 1.000.000 cues and appears to scale well with
sorting costs. However, batch sizes beyond 100.000 are not recommended,
as this would likely hurt the responsiveness of the webpage too much.
To maintain responsiveness it would make sense to divide the batch in
smaller parts and spread them out in time. Use cases requiring loading of
over 100.000 cues might also be rare in practice.

 Sequencer

Sequencer

Contents

	Sequencer

	Introduction

	Linear Media State

	Definition

	Programming Model

	Sequencer Modes

	Cue ordering

	Events

	Cue Ordering

Introduction

The Sequencer implements precisely timed playback of timed data.
Playback is controlled using one or two TimingObjects.
Timed data is represented as cues managed by a Dataset.

Demo

Demo Sequencer Point Mode sequencing timed data using a single timing object (see Point Mode).

Demo Sequencer Interval Mode sequencing timed data using two timing objects (see Interval Mode).

Linear Media State

Continuous media experiences require media state to be well defined
along its timeline. For discrete media content, cues tied to points or
intervals on the timeline is a simple and efficient mechanism for
achieving this goal:

At any given point p on the timeline, the media state at point p
is given by the set of all cues with an interval covering point p.

For instance, by using cues with back-to-back intervals … [a,b), [b,c), …
one may ensure that the entire timeline is covered by media content. The use of
open and closed brackets removes any ambiguity regarding the media state at
interval endpoints.

Importantly, this definition is also a solid basis for implementing
navigation and playback of the media state. For example, jumping from one
point to another on the timeline requires a quick transition between two
different media states, i.e. deactivation of some cues and activation of others.
Furthermore, during continuous media playback, cues must be activated and deactivated at
the correct time and in the correct order.

The sequencer encapsulates all of this, leaving the programmer to specify appropriate
actions as cues become active and inactive, by implementing handlers for
sequencer change and remove events.

Definition

	The sequencer implements Cue Collection and holds a
subset of the cues managed by its source Dataset.

	At any time, the sequencer holds the particular subset of cues that are
active cues.

	The sequencer emits change, remove and batch events
(see: Cue Collection) as cues are activated or deactivated
during playback.

	Active cues

	Cues are active or inactive based on the playback position, and how it
compares to the cue interval, which defines the validity of the
cue on the timeline. The sequencer may well be an empty collection, if no cues
are active at a particular time.

	Precisely timed events

	As playback position gradually changes during timed playback, cues must be
activated or deactivated at the correct time. The sequencer dynamically manipulates
its own cue collection and precisely schedules change and remove events
(see: Cue Collection) for activation and deactivation of cues.

	Flexible timeline navigation and playback

	Sequencers have full support for all kinds of navigation and playback allowed by
Timing Object. This includes jumping on the timeline, setting the playback
velocity, backwards playback and even accelerated playback. For instance, jumping
on the timeline might cause all active cues to be deactivated, and a new set of
cues to be activated.

	Dynamic dataset

	Sequencers support dynamic changes to its source Dataset, at any time,
also during playback. Cues added to the dataset will be activated immediately
if they should be active. Cues removed from the dataset will be deactivated,
if they were active. Modified cues will stay active, stay inactive,
be activated or be deactived, whichever is appropriate.

	Sequence of timed events

	The change and remove events of the sequencer provide the full
storyline (i.e. sequence of transitions) for the set of active cues.
This also includes initialization, due to the Initial Events semantics
of the change event. The change event will initially emit cues that
are already active - immediately after the subscription is made. After
that, change and remove events will communicate all subsequent changes,
including changes to cue data.

Programming Model

From the perspective of the programmer, the sequencer is a
dynamic, read-only view into a Dataset of cues. The view can always be trusted to represent the set of active cues correctly, and to communicate all future changes as change and remove events, at the correct time. This makes for an attractive programming model, where precisely timed playback-visualizations of timed data can be achieved simply by
implementing handlers for sequencer events. In other words, the programmer only
needs to specify what it means for a cue to become active or inactive.

As such, the sequencer encapsulates all the timing-related complexity, and
transforms the challenge of time-driven visualization into a challenge of
data-driven visualization. Reactive data visualization is already
a rich domain with mature practices and a broad set of tools and frameworks to
go with them. So, the sequencer essentially bridges the gap; allowing
timed visualizations to reap the fruits of modern data visualation tools.

from data-driven to time-driven visualization

As a trivial example, this demonstrates playback of subtitles in
a Web page (without the need for a video).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	/*
 Simplistic subtitle playback

 const subtitles = [{
 id: "1234",
 start: 123.70,
 end: 128.21,
 text: "This is a subtitle"
 }, ...]
*/

let ds = new Dataset();
let to = new TimingObject();
let activeCues = new Sequencer(ds, to);

// subtitle DOM element
let elem = document.getElementById("subtitle");

// create and load cues
let cues = subtitles.map(sub => {
 let itv = new Interval(sub.start, sub.end);
 return {key: sub.key, interval: itv, data: sub};
});
ds.update(cues);

activeCues.on("change", function (eArg) {
 // activated subtitle
 elem.innerHTML = eArg.new.data.text;
});

activeCues.on("remove", function (eArg) {
 // deactivate subtitle
 elem.innerHTML = "";
});

// start playback !
to.update({velocity:1});

Note

Note how the application-specific part of this example is only a few lines of code (highlighted lines) limited to making cues from specific data format (20-22) and rendering cues (17, 28, 33).

Sequencer Modes

The sequencer supports two distinct modes of operation, point mode
and interval mode, with different definitions for active cues.

Point Mode

Point mode means that sequencing is based on a moving sequencing point.

The sequencer is controlled by a single timing object and uses the position
of the timing object as sequencing point.

A cue is active whenever the sequencing point is
inside the cue interval.

Point mode sequencing is the traditional approach for sequencing timed data
based on a media clock.

[image: ../_images/sequencer_point_mode1.png]

The figure illustrates a set of cues and a timing object. The vertical
dashed line shows the position of the timing object on the timeline.
Cues that are intersected by this line, one green and one purple,
are active. As the timing object moves to the right, a blue cue
will soon be activated to, just before the green cue is deactivated.

Initialise a sequencer in point mode by supplying a single timing object.

// dataset
let ds;
// timing object
let to = new TimingObject();
// point mode sequencer
let activeCues = new Sequencer(ds, to);

Demo

Demo Sequencer Point Mode sequencing timed data using a single timing object (see Point Mode).

Interval Mode

Interval mode means that sequencing is based on a moving sequencing interval.

The sequencer is controlled by two timing objects, and the sequencer uses the
positions of the two timing objects to form the sequencing interval.

A cue is active whenever at least one point inside the
sequencing interval is also inside the cue interval.

Interval mode is useful for playback of sliding windows of timed data.
For instance, interval mode sequencing can be used in conjuction with
point mode sequencing, to prefetch timed data just-in-time for point
mode sequenced rendering.

[image: ../_images/sequencer_interval_mode1.png]

The figure illustrates a set of cues and two timing objects. The vertical
dashed lines shows the positions of the timing objects on the timeline.
Cues that are visible between these two lines are active. In this case,
the active cues include 2 gray, 2 light-blue, 2 green, 1 pink, 2 purple,
1 yellow and 12 blue cues. As both timing objects move to the right, the
first event will be the activation of the blue cue to the right of the
second timing object.

Initialise a sequencer in interval mode by supplying two timing objects.

// dataset
let ds;

// timing object
let to1 = new TimingObject();

/*
 skewconverter
 creaate timing object 10.0 ahead of to1
*/
let to2 = new SkewConverter(to1, 10.0);

// interval mode sequencer
let s2 = new Sequencer(ds, to1, to2);

Demo

Demo Sequencer Interval Mode sequencing timed data using two timing objects (see Interval Mode).

Cue ordering

During playback, if multiple cues share endpoint values, playback
events will also be due at the same time. In this case, cue ordering
is based on Endpoint Ordering. Endpoint ordering is used for
forward movement, or no movement. For backward movement, endpoint ordering is reversed.

Changes in the dataset may also cause events to be emitted for multiple cues
at the same time. For instance, if new cues are inserted into the dataset, some of them might immediately become active. In this case, cue ordering
is still based on Endpoint Ordering and movement direction.
For forward movement or no movement, cues are ordered by
their low endpoints. For backward movement, cues are ordered
by their high endpoints, and the ordering is reversed.

By default, accessors keys(), values() and entries() do not provide any guarantees with respect to cue ordering.

Events

Sequencer supports three events batch, change and remove,
as defined in Cue Collection.

Cue Ordering

See Cue Ordering.

 Events

Events

Contents

	Events

	Introduction

	Terminology

	Subscription and unsubscription

	Event Callback

	Initial Events

Introduction

All classes in timingsrc uses a custom framework for event notification which supports the Initial Events pattern.

Terminology

	event provider

	
	defines one or more named events

	accepts subscriptions and un-subscriptions of event callbacks
for named events.

	triggers event notification for named events by invoking
subscribing event callbacks.

	event consumer

	
	subscribes by associating event callback with named event of
event provider

	receives event notification by event callback invocation

Subscription and unsubscription

Event consumers subscribe and un-subscribe to events using operations .on()
and .off() of the event provider. For instance, this is how to
subscribe to and un-subscribe from a change event.

// event provider
let ep;

// register handler with named event
let sub = ep.on("change", function (eArg, eInfo) {
 // handle change event
});

// unregister subscription
ep.off("change", sub);

It is safe to subscribe or unsubscribe from within an event callback.
For instance, this can be used to implement fire once semantics.

// event provider
let ep;

// subscribe
let sub = ep.on("change", function() {
 ep.off("change", sub);
});

Event Callback

Execution

When an event is triggered, the execution of event callbacks is always decoupled using Promise.then(). This avoids nested invocation of event callbacks which may be confusing and hard to debug.

Same Callback

It is safe to use the same event callback with multiple subscriptions. For
instance, in some cases it may be practical to handle different event types
using only one callback. If needed, the eInfo parameter of
event_callback() identifies the source of the event, i.e. the event provider and the event name.

This

It is also possible to control the value of the this object during
event callback execution. This is useful when the callback handler is a
class method, thus the callback handler must be invoked
with this set to the class instance. There are at least three ways to
achieve this.

One approach is to wrap the event handler in a function which explicitly invokes the event handler with the correct this object.

class EventConsumer {

 constructor(eventProvider) {
 this.ep = eventProvider;
 // subscribe to event from event provider
 let self = this;
 this.sub = this.ep.on("change", function(eArg, eInfo) {
 self.onevent(eArg, eInfo);
 });
 }

 // event handler as class method
 onevent(eArg, eInfo) {...}
}

Another approach is to use .bind().

class EventConsumer {

 constructor(eventProvider) {
 this.ep = eventProvider;
 // subscribe to event from event provider
 this.sub = this.ep.on("change", this.onevent.bind(this));
 }

 // event handler as class method
 onevent(eArg, eInfo) {...}
}

Or, you can explicitly specify the this object as an option with
EventProviderInterface.on().

class EventConsumer {

 constructor(eventProvider) {
 this.ep = eventProvider;
 // subscribe to event from event provider
 this.sub = this.ep.on("change", this.onevent, {ctx:this});
 }

 // event handler as class method
 onevent(eArg, eInfo) {...}
}

Initial Events

The traditional semantic of events systems is that events convey state
changes. So, when an event consumer subscribes to an event, there will be no
event notification until the next state change occurs. This yields a common pattern when mirroring stateful event providers:

	Request a snapshot of the currect state

	Subscribe to future state changes. For each state change, update the snapshot accordingly.

In code, this might look something like this:

// event provider
let ep;

// refresh UI based on current state of event provider
function refresh (state) {...}

// request initial state
let state = ep.get_state();
refresh(state);

// subscribe to future state changes
ep.on("change", function(eArg) {
 /*
 update state somehow
 - apply diff from eArg
 - or, fetch the current state
 */
 state = ep.get_state();
 refresh(state);
});

The basic idea of initial events is to simplify so that we handle
both initial state and subsequent state changes the same manner, with a single
event callback.

// event provider
let ep;

// refresh UI based on current state
function refresh (state) {...}

// subscribe to future state changes
ep.on("change", function(eArg) {
 /*
 update state somehow
 - apply diff from eArg
 - or, fetch the current state
 */
 state = ep.get_state();
 refresh(state);
});

For this to be correct, the event provider must provide the initial state
as event notifications, prior to delivering events as usual.
The initial events semantic thus simplifies application code and shifts
initialization complexity from the event consumer onto the event provider.

The initial events semantic only affects a few details in the
EventProviderInterface(). Primarily, there is an extra event.
The eInfo.init parameter of event_callback() is true for initial
events. It is also possible to opt out of initial events semantic, by
specifying {init:false} as option to EventProviderInterface.on().

 Events API

Events API

Events API is common to all objects implementing the Events.
This includes Dataset and Sequencer.

	
event_callback(eArg, eInfo)

	Callback function for event notification, invoked by event provider.

	Arguments

	
	eArg (object) – Event argument.
Application specific object defined by event provider.
May be undefined. Typically used to describe the state
transition that caused the event to be triggered.

	eInfo (object) – Event information.
Generic object defined by event provider.

	eInfo.src

	event provider object

	eInfo.name

	event name

	eInfo.sub

	subscription object

	eInfo.init

	true if event is init event

	
class EventProviderInterface()

	Event provider interface

	
EventProviderInterface.on(name, callback[, options])

	Register a callback for events with given name. Returns subscription handle.

	Arguments

	
	name (string) – event name

	callback (function) – event_callback()

	options (object) – Callback options

	options.ctx

	Specify context for this object in event callback.
If not specified, this is the event provider.

	options.init

	Boolean. If false, opt out of init event semantics.

	Throws

	Error if event name is not defined.

	Returns object

	subscription. Use subscription handle
to cancel subscription with off().

	
EventProviderInterface.off(subscription)

	Un-register a callback for given subscription handle.

	Arguments

	
	subscription (object) – subscription handle from on()

 Cue Collection API

Cue Collection API

The cue collection API is common to all objects implementing the Cue Collection interface. This includes Dataset and Sequencer.

	
class CueCollection(options)

	
	Arguments

	
	options.order (object) – order, see Cue Ordering

Constructor abstrac base class for cue collection.

	
CueCollection.size

	see JS Map Documentation [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map]

	
CueCollection.has(key)

	see JS Map Documentation [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map]

	
CueCollection.get(key)

	see JS Map Documentation [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map]

	
CueCollection.keys()

	see JS Map Documentation [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map]

No particular ordering is guaranteed.

	
CueCollection.values()

	see JS Map Documentation [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map]

No particular ordering is guaranteed.

	
CueCollection.entries()

	see JS Map Documentation [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map]

No particular ordering is guaranteed.

	
CueCollection.cues(options)

	The cues method is similar to CueCollection.values(), but conveniently adds support for sorting the resulting cues.
See Cue Ordering. Order supplied in this function take precedent over order supplied in constructor.

	Arguments

	
	options.order (object) – ordering of cues

	string “low” : ascending order by lower cue interval endpoint

	string “high”: ascending order by higher cue interval endpoint

	function cmp: custom order by supplying ordering function, similar to Array.sort(cmp).

	Returns Array

	array of cues

	
CueCollection.on(name, callback[, options])

	see EventProviderInterface.on()

	
CueCollection.off(name, subscription)

	see EventProviderInterface.off()

 Timing Object API

Timing Object API

	
class TimingObject(options)

	Timing object constructor.

	Arguments

	
	options (object) – options for timing object creation

	options.range (Array) – range of timing object timeline [low, high]

	options.position (float) – initial position

	options.velocity (float) – initial velocity

	options.acceleration (float) – initial acceleration

	
TimingObject.vector

	Current state vector of timing object.

	Returns object

	initial state vector.

	
TimingObject.range

	Current range restrictions on timing object.

	Param Array range

	new range : [low, high]

	Returns Array

	range : [low, high]

	
TimingObject.ready

	Promise resolved when timing object is ready

	Returns Promise

	ready promise

	
TimingObject.pos

	Convenience accessor for timing object position, based on query.

	Returns float

	current position

	
TimingObject.vel

	Convenience accessor for timing object velocity, based on query.

	Returns float

	current velocity

	
TimingObject.acc

	Convenience accessor for timing object acceleration, based on query.

	Returns float

	current acceleration

	
TimingObject.timingsrc

	Setter/getter property current parent of timing object.

timingsrc is undefined if timing object is local object (does not have a parent). Otherwise timingsrc may be Timing Object or Timing Provider

	Param object timingsrc

	new timingsrc

	Returns object

	timingsrc

	
TimingObject.isReady()

	Timing object ready state (internal vector defined)

	Returns boolean

	true if timing object is ready

	
TimingObject.query()

	Query timing object.

see TimingObject Query

	Returns vector

	current state vector

	
TimingObject.update(vector)

	Update timing object.

see TimingObject Update

	Returns Promise

	update promise

	
TimingObject.on(name, callback[, options])

	Register event handler

see EventProviderInterface.on()

see Change Event, Timeupdate Event and Rangechange Event

	
TimingObject.off(name, subscription)

	Unregister event handler

see EventProviderInterface.off()

 Timing Converter API

Timing Converter API

Contents

	Timing Converter API

	Introduction

	Skew Converter API

	Scale Converter API

	Loop Converter API

	Delay Converter API

	Timeshift Converter API

Introduction

All timing converters implement the Timing Object API.

Skew Converter API

Skew Converter shifts all positions of its parent timingsrc by skew. Skew can be set at any time, and an skewchange event is emitted whenever the skew is changed.

	
class SkewConverter(timingsrc, skew)

	
	Arguments

	
	timingsrc (object) – parent timingobject or timingprovider

	skew (float) – initial skew

Creates a skew converter tied to parent timingsrc. Skew converter defines skewchange event.

	
SkewConverter.skew

	
	Param float skew

	new skew

	Returns float skew

	current skew

Scale Converter API

Scale Converter multiplies the vector of its parent timingsrc with a factor. This factor can be set at any time, and an scalechange event is emitted whenever the scale is changed.

	
class ScaleConverter(timingsrc, factor)

	
	Arguments

	
	timingsrc (object) – parent timingobject or timingprovider

	factor (float) – initial factor

Creates a scale converter tied to parent timingsrc.
Scale converter defines scalechange event.

	
ScaleConverter.factor

	
	Param float factor

	new factor

	Returns float factor

	current factor

Loop Converter API

Loop Converter is essentially a modulo operation on its parent timingsrc, looping the position of the converter over values within its range.

	
class LoopConverter(timingsrc, range)

	
	Arguments

	
	timingsrc (object) – parent timingobject or timingprovider

	range (Array) – initial range, e.g. [low,high]

Creates a loop tied to parent timingsrc.

Delay Converter API

Delay Converter mirrors the behaviour of its parent timingsrc, yet with a fixed delay.

	
class DelayConverter(timingsrc, delay)

	
	Arguments

	
	timingsrc (object) – parent timingobject or timingprovider

	delay (float) – initial delay

Creates a delay converter tied to parent timingsrc. Delay converter defines delaychange event.

	
DelayConverter.delay

	
	Param float delay

	new delay

	Returns float delay

	current delay

Timeshift Converter API

Timeshift Converter projects the current behavior of the parent timingsrc into the future, or back in time. Positive offset is speculative, essentially predicting future states of the parent timingsrc.

	
class TimeshiftConverter(timingsrc, offset)

	
	Arguments

	
	timingsrc (object) – parent timingobject or timingprovider

	offset (float) – initial time offset

Creates a timeshift converter tied to parent timingsrc. Timeshift converter defines offsetchange event.

	
TimeshiftConverter.offset

	
	Param float offset

	new time offset

	Returns float offset

	current time offset

 Timing Provider API

Timing Provider API

see Timing Provider

	
class TimingProvider()

	Abstract constructor function for timing provider object

	Returns object timingProvider

	

	
TimingProvider.vector

	Get current state vector of timing provider

	Returns object vector

	current state vector of timing provider.

	
TimingProvider.skew

	Get current skew of timing provider clock - relative to local clock

	Returns float skew

	current skew

	
TimingProvider.range

	Get current range restrictions of timing provider

	Returns Array range

	range of timing provider, [low, high]

	
TimingProvider.update(vector)

	Request update to current state vector of timing provider

	Arguments

	
	vector (object) – update vector

Update vectors may be partially complete. For instance, to change the position, only the new position must be given.

	
TimingProvider.on(type, callback)

	Register callback on timingprovider event. Support for Initial Events is not required.
Supported eventtypes: skewchange and vectorchange

	Arguments

	
	type (string) – event type

	callback (function) – event callback

 Interval API

Interval API

	
class Interval(low[, high[, lowInclude[, highInclude]]])

	
	Arguments

	
	low (float) – leftmost endpoint of interval

	high (float) – rightmost endpoint of interval

	lowInclude (boolean) –
low endpoint value included in interval

true means left-closed

false means left-open

true by default

	highInclude (boolean) –
high endpoint value included in interval

true means right-closed

false means right-open

false by default

If only low is given, or if low == high, the interval is singular.
In this case lowInclude and highInclude are both true.

If low is -Infinity, lowInclude is always true
If high is Infinity, highInclude is always true

	
Interval.low

	float: left endpoint value

	
Interval.high

	float: right endpoint value

	
Interval.lowInclude

	boolean: true if interval is left-closed

	
Interval.highInclude

	boolean: true if interval is right-closed

	
Interval.singular

	boolean: true if interval is singular

	
Interval.finite

	boolean: true if both low and high are finite values

	
Interval.length

	float: interval length (high-low)

	
Interval.endpointLow

	endpoint: low endpoint [value, false, lowInclude, singular]

	
Interval.endpointHigh

	endpoint: low endpoint [value, true, highInclude, singular]

	
Interval.toString()

	
	Returns string

	

Human readable string

	
Interval.covers_endpoint(p)

	
	Arguments

	
	p (number) – point

	Returns boolean

	True if point p is inside interval

Test if point p is inside interval.

See Interval Comparison.

let a = new Interval(4, 5) // [4,5)
a.covers_endpoint(4.0) // true
a.covers_endpoint(4.3) // true
a.covers_endpoint(5.0) // false

	
Interval.equals(other)

	
	Arguments

	
	other (Interval) – interval to compare with

	Returns boolean

	true if intervals are equal

See Interval Comparison.

	
Interval.compare(other)

	
	Arguments

	
	other (Interval) – interval to compare with

	Returns int

	comparison relation

Compares interval to another interval, i.e. cmp(interval, other).
See Interval Comparison.

let a = new Interval(4, 5) // [4,5)
let b = new Interval(4, 5, true, true) // [4,5]
a.compare(b) == Interval.Relation.COVERED // true
b.compare(a) == Interval.Relation.COVERS // true

	
Interval.match(other[, mask=62])

	
	Arguments

	
	other (Interval) – interval to compare with

	Returns boolean

	true if intervals match

Matches two intervals. Mask defines what consitutes a match.
See Interval Match.

let a = new Interval(4, 5) // [4,5)
let b = new Interval(4, 5, true, true) // [4,5]
a.match(b) // true
b.match(a) // true

	
Interval.Relation

	{
 OUTSIDE_LEFT: 64, // 0b1000000
 OVERLAP_LEFT: 32, // 0b0100000
 COVERED: 16, // 0b0010000
 EQUALS: 8, // 0b0001000
 COVERS: 4, // 0b0000100
 OVERLAP_RIGHT: 2, // 0b0000010
 OUTSIDE_RIGHT: 1 // 0b0000001
}

	
Interval.Interval.Relation.OUTSIDE_LEFT

	

	
Interval.Relation.OVERLAP_LEFT

	

	
Interval.Relation.COVERED

	

	
Interval.Relation.EQUAL

	

	
Interval.Relation.COVERS

	

	
Interval.Relation.OVERLAP_RIGHT

	

	
Interval.Relation.OUTSIDE_RIGHT

	

	
Interval.cmpLow(interval_a, interval_b)

	
	Arguments

	
	interval_a (Interval) – interval A

	interval_b (Interval) – interval B

	Returns int

	
a < b : -1

a == b : 0

a > b : 1

Use with Array.sort() to sort Intervals by their low endpoint.

a = [
 new Interval(4,5),
 new Interval(2,3),
 new Interval(1,6)
];
a.sort(Interval.cmpLow);
// [1,6), [2,3), [4,5)

	
Interval.cmpHigh(interval_a, interval_b)

	
	Arguments

	
	interval_a (Interval) – interval A

	interval_b (Interval) – interval B

	Returns int

	
a < b : -1

a == b : 0

a > b : 1

Use with Array.sort() to sort Intervals by their high endpoint.

a = [
 new Interval(4,5),
 new Interval(2,3),
 new Interval(1,6)
];
a.sort(Interval.cmpHigh);
// [2,3), [4,5), [1,6)

 Dataset API

Dataset API

	
class Dataset(options)

	
	Arguments

	
	options.order (object) – see Cue Ordering

Creates an empty dataset.

	
Dataset.update(cues[, options])

	
	Arguments

	
	cues (iterator) – iterable of cues or single cue

	options (object) – options

	Returns Array

	list of cue change items

Insert, replace and delete cues from the dataset. For details on how
to construct cue parameters see Update. For details on
return value see Update Result.

	options.equals: custom equality function for cue data.

See Cue Equality.

	options.chaining: support chaining. True by default.

See Cue Chaining.

	options.safe: safe mode. False by default.

See Cue Management.

	options.debug: debug mode. False by default.

Performs integrity testing of internal datastructures after each update operation, throwing exceptions if not passed.

	
Dataset.addCue(key, interval, data)

	Add or replace a single cue. See Update Convenience Methods.

	Arguments

	
	key (object) – cue key

	interval (Interval) – cue interval

	data (object) – cue data

	Returns Dataset dataset

	dataset

	
Dataset.removeCue(key)

	Remove a single cue. See Update Convenience Methods.

	Arguments

	
	key (object) – cue key

	Returns Dataset dataset

	dataset

	
Dataset.makeBuilder(options)

	Make cue argument builder object with options. See Update Convenience Methods.

	Params object options

	update options (see Dataset.update())

	Returns object builder

	cue argument update builder

	builder.addCue(key, interval, data)

	builder.removeCue(key)

	
Dataset.clear()

	
	Returns Array

	list of change items: cue changes caused by the operation

Clears all cues of the dataset. Much more effective than iterating
through cues and deleting them.

	
Dataset.lookup(interval[, mask])

	
	Arguments

	
	interval (Interval) – lookup interval

	mask (int) – match mask

	Returns Array

	list of cues

Returns all cues matching a given interval on dataset.
Lookup mask specifies the exact meaning of match, see Interval Match.

Note also that the lookup operation may be used to lookup cues that match a single point on the timeline, simply by defining the lookup interval as a single point, see Definition.

	
Dataset.lookup_endpoints(interval)

	
	Arguments

	
	interval (Interval) – lookup interval

	Returns Array

	list of {endpoint: endpoint, cue:cue} objects

Lookup all cue endpoints on the dataset, within some interval see
Lookup endpoints.

	
Dataset.lookup_delete(interval[, mask])

	
	Arguments

	
	interval (Interval) – lookup interval

	mask (int) – match mask

	Returns Array

	list of cue change items

Deletes all cues matching a given lookup interval.
Similar to lookup, see Lookup.

	
Dataset.size

	see ObservableMapInterface.size()

	
Dataset.has(key)

	see ObservableMapInterface.has()

	
Dataset.get(key)

	see ObservableMapInterface.get()

	
Dataset.keys()

	see ObservableMapInterface.keys()

	
Dataset.values()

	see ObservableMapInterface.values()

	
Dataset.entries()

	see ObservableMapInterface.entries()

	
Dataset.cues(options)

	see CueCollection.cues()

	
Dataset.on(name, callback[, options])

	see EventProviderInterface.on()

	
Dataset.off(name, subscription)

	see EventProviderInterface.off()

 Sequencer API

Sequencer API

	
class Sequencer(dataset, to_A, [to_B,]options)

	
	Arguments

	
	dataset (Dataset) – source dataset of sequencer

	to_A (TimingObject) – first timing object

	to_B (TimingObject) – optional second timing object

	options.order (object) – see Cue Ordering

Creates a sequencer associated with a dataset.

	
Sequencer.dataset

	Dataset used by sequencer.

	
Sequencer.size

	see CueCollection.size()

	
Sequencer.has(key)

	see CueCollection.has()

	
Sequencer.get(key)

	see CueCollection.get()

	
Sequencer.keys()

	see CueCollection.keys()

	
Sequencer.values()

	see CueCollection.values()

	
Sequencer.entries()

	see CueCollection.entries()

	
Sequencer.cues(options)

	see CueCollection.cues()

	
Sequencer.on(name, callback[, options])

	see EventProviderInterface.on()

	
Sequencer.off(name, subscription)

	see EventProviderInterface.off()

 MediaSync API

MediaSync API

	
class MCorp.mediaSync(elem, to[, options])

	Constructor function. Returns handle for controlling synchronization.

	Arguments

	
	elem (HTMLMediaElement) – The HTMLMediaElement to synchronize

	to (TimingObject) – The timingobject to synchronize after

	options (object) – Synchronization options

	options.skew (float) – (default 0.0) Skew for timing object position, ehead of synchronization. Tip: calculate by start offset of content - start position of timing object.

	options.automute (boolean) – (default true) Mute the media element when playing too fast (or too slow)-

	options.mode (string) – (default “auto”)
- “skip”: Force “skip” mode - i.e. don’t try using playbackRate.
- “vpbr”: Force variable playback rate. Normally not a good idea
- “auto” (default): try playbackRate. If it’s not supported, it will struggle for a while before reverting. If ‘options.remember’ is not set to false, this will only happen once after each browser update.

	options.debug (object) – (default null) If debug is true, log to console, if a function, the function will be called with debug info

	options.target (float) – (default 0.025 - 25ms ~ lipsync) Target precision. Default is likely OK, if we can do better, we will. Target too narrow, makes for a more skippy experience. When using variable playback rates, this parameter is ignored (target is always 0)

	options.remember (boolean) – (default true) Remember the last experience on this device - stores support or lack of support for variable playback rate. Records in localStorage under key “mediascape_vpbr”, clear it to re-learn.

	Returns object mediaSync

	mediaSync object

	
MCorp.mediaSync.getSkew()

	Get the current skew

	Returns float skew

	current skew

	
MCorp.mediaSync.setSkew(skew)

	Skew the timing object. The same effect can be achieved by using a Skew Converter.

	Arguments

	
	skew (float) – new skew

	
MCorp.mediaSync.setOption(key, value)

	Set or update options

	Arguments

	
	key (string) – The option key to set

	value (object) – The option value to set

sync.setOption("debug", false); // Disable debugging
sync.setOption("target", 0.1); // Change to coarser target

	
MCorp.mediaSync.getMethod()

	Get the current method for synchronization

	Returns string method

	“skip” or “playbackrate”

	
MCorp.mediaSync.setMotion(to)

	Set the timing object to synchronize after

	Arguments

	
	to (TimingObject) – The timingobject to synchronize after

	
MCorp.mediaSync.stop()

	Stop synchronization

 Index

Index

 C
 | D
 | E
 | I
 | L
 | M
 | S
 | T

C

 	
 	CueCollection() (class)

 	
 	CueCollection.size (CueCollection attribute)

D

 	
 	Dataset() (class)

 	Dataset.size (Dataset attribute)

 	
 	DelayConverter() (class)

 	DelayConverter.delay (DelayConverter attribute)

E

 	
 	event_callback() (built-in function)

 	
 	EventProviderInterface() (class)

I

 	
 	Interval() (class)

 	Interval.cmpHigh() (Interval method)

 	Interval.cmpLow() (Interval method)

 	Interval.endpointHigh (Interval attribute)

 	Interval.endpointLow (Interval attribute)

 	Interval.finite (Interval attribute)

 	Interval.high (Interval attribute)

 	Interval.highInclude (Interval attribute)

 	Interval.Interval.Relation.OUTSIDE_LEFT (Interval.Interval.Relation attribute)

 	Interval.length (Interval attribute)

 	
 	Interval.low (Interval attribute)

 	Interval.lowInclude (Interval attribute)

 	Interval.Relation (global variable or constant)

 	Interval.Relation.COVERED (Interval.Relation attribute)

 	Interval.Relation.COVERS (Interval.Relation attribute)

 	Interval.Relation.EQUAL (Interval.Relation attribute)

 	Interval.Relation.OUTSIDE_RIGHT (Interval.Relation attribute)

 	Interval.Relation.OVERLAP_LEFT (Interval.Relation attribute)

 	Interval.Relation.OVERLAP_RIGHT (Interval.Relation attribute)

 	Interval.singular (Interval attribute)

L

 	
 	LoopConverter() (class)

M

 	
 	MCorp.mediaSync() (class)

S

 	
 	ScaleConverter() (class)

 	ScaleConverter.factor (ScaleConverter attribute)

 	Sequencer() (class)

 	
 	Sequencer.dataset (Sequencer attribute)

 	Sequencer.size (Sequencer attribute)

 	SkewConverter() (class)

 	SkewConverter.skew (SkewConverter attribute)

T

 	
 	TimeshiftConverter() (class)

 	TimeshiftConverter.offset (TimeshiftConverter attribute)

 	TimingObject() (class)

 	TimingObject.acc (TimingObject attribute)

 	TimingObject.pos (TimingObject attribute)

 	TimingObject.range (TimingObject attribute)

 	TimingObject.ready (TimingObject attribute)

 	
 	TimingObject.timingsrc (TimingObject attribute)

 	TimingObject.vector (TimingObject attribute)

 	TimingObject.vel (TimingObject attribute)

 	TimingProvider() (class)

 	TimingProvider.range (TimingProvider attribute)

 	TimingProvider.skew (TimingProvider attribute)

 	TimingProvider.vector (TimingProvider attribute)

 Basic Timing Object Controls

Basic Timing Object Controls

Contents

	Basic Timing Object Controls

	Introduction

Introduction

This demonstrates how to make a Webpage with basic control elements
for a Timing Object. More advanced controls may use this
as a starting point.

Step 1: Create a Webpage

Create a web page with one div element for showing the position
of the the timingobject, and two buttons pause and play.

<!DOCTYPE html>
<html>
 <head>
 <script type="module">
 import {TimingObject} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";
 // create a timing object
 const to = new TimingObject();
 // add logic here
 </script>
 </head>
 <body>
 <div>
 Timing Object Position:
 </div>
 <div>
 <button id="play">Play</button>
 <button id="pause">Pause</button>
 <button id="reverse">Reverse</button>
 <button id="reset">Reset</button>
 </div>
 </body>
</html>

Step 2: Render the position of the timing object

During playback the timingobject position is continuously increasing (or decreasing). To visualize this, sample the position at an appropriate frequency. The quick way is to this is to use the timeupdate event of
the timing object, which emits at 5Hz (every 200 ms), as long as the timingobject is not paused.

// use timeupdate event to update position
const pos_elem = document.getElementById("position");
to.on("timeupdate", function() {
 // refresh position
 pos_elem.innerHTML = `${to.pos.toFixed(2)}`;
});

Alternatively, use TimingSampler for a custom frequency.
The sampler is not active when the timingobject is paused.

const sampler = new TimingSampler(to, {period:100});
sampler.on("change", function() {
 pos_elem.innerHTML = `${to.pos.toFixed(2)}`;
});

Step 3: Connect play and pause buttons

document.getElementById("play").onclick = function () {
 to.update({velocity:1});
};
document.getElementById("pause").onclick = function () {
 to.update({velocity:0});
};
document.getElementById("reverse").onclick = function () {
 to.update({velocity:-1});
};
document.getElementById("reset").onclick = function () {
 to.update({position:0, velocity:0};
};

Tip

During development it may be helpful to make the reference to the
timing object visible in the global scope. This way you may also
control the timing object manually from the developer console.

Tip

If the timing object is connected to an online timing object,
controls will apply to all Webpages connected to the same online
timing object. This may be very useful in development, as programmers
may have one page with controls, which they may then use to test timed functionality in other Webpages.

Step 4: Ready

Ready to load the page and start controlling the timing object.

Demo

 FAQ

FAQ

 Howto

Howto

	Timing object controls

 Perspectives

Perspectives

Contents

	Perspectives

	Introduction

Introduction

Note

Work in progress

	Temporal Interoperability

	As detailed in the Introduction, a main purpose of the timing object is to allow the classical fruits of composition, i.e. mash-up, integration, code-reuse, flexibility and extensibility to be fully exploited by timing sensitive Web applications. In other words, the goal is to support
precise temporal interoperability on the Web, and to make it easy to achieve time consistent behaviour across very different timing sensitive media frameworks and components.

	Multi-device timing

	Through the concept of Timing Provider, the timing object supports integration with online timing services. This extends the idea of sharing a timing object between timing sensitive components in a Web page, to timing sensitive components scattered across different devices, globally if needed. We call this multi-device timing.

An important feature of the timingsrc programming model is that timing sensitive components can be reused in single-device or multi-device applications, without modification. Multi-device support has become a feature of the timing object, not the component. As a result, web developers can focus on exploiting timing in the interest of creating great user experiences, while timing providers can focus on the challenges of multi-device timing.

	External Timing

	What we pr