
timingsrc v3
Release 1.0

Jun 12, 2023

Main

1 Introduction 3

2 Module 5

3 Quickstart 9

4 Version 13

5 Standardization 15

6 Contributions 17

7 Demo TimingObject 19

8 Demo TimingConverter 23

9 Demo TimingProvider 27

10 Demo MediaSync 29

11 Demo Sequencer Point Mode 33

12 Demo Sequencer Interval Mode 39

13 Timing Object 45

14 Timing Converter 49

15 Timing Provider 55

16 MediaSync 59

17 Interval 61

18 Cue 67

19 Cue Collection 69

20 Dataset 73

i

21 Sequencer 83

22 Events 89

23 Events API 93

24 Cue Collection API 95

25 Timing Object API 97

26 Timing Converter API 99

27 Timing Provider API 103

28 Interval API 105

29 Dataset API 109

30 Sequencer API 113

31 MediaSync API 115

32 Welcome to timingsrc! 117

33 Timing Object 119

34 Timing Converter 121

35 Timing Provider 123

36 Dataset and Sequencer 125

37 MediaSync 127

38 Indices and tables 129

Index 131

ii

timingsrc v3, Release 1.0

Timingsrc is hosted at GitHub.

Timingsrc

A programming model for time sensitive Web applications, based on the Timing Object. Precise timing, synchroniza-
tion and control enabled for single-device and multi-device Web applications.

Main 1

https://github.com/webtiming/timingsrc

timingsrc v3, Release 1.0

2 Main

CHAPTER 1

Introduction

The Web is arguably the most important platform for multi-media, with universal reach and a rich selection of powerful
media frameworks. This includes built-in frameworks such as MediaElement, WebAudio, WebGL, and WebAnimation
– and also a host of external frameworks, extensions, plugins, components or tools for rendering or visualizing all kinds
of data and media types.

With so many powerful frameworks for rendering and visualization, the idea of combining them is both intuitive and
highly attractive. After all, flexible composition is a defining characteristic of the Web. For example, live coverage of
sport car racing might target co-presentation of a number of media types, including camera angles, audio commentary,
sound effects, data-driven infographics, animated maps, social media and more.

However, co-presentation of timed media content requires fairly precise synchronization, and the Web has little support
for this. The Web is primarily a platform for embedding independent media frameworks. It offers no particular
mechanism for precise coordination across different media frameworks.

The consequences of this are quite visible. Media providers are eagerly extending their offerings with more data
sources and streams, yet without the ability to time-align them correctly, user experiences may quickly become in-
consistent, annoying, confusing, or simply broken. A well known example is soccer goal alerts going off 30 seconds
before the goal happens in the live video stream.

In the media industry, low-latency streaming is sometimes suggested as a remedy for such issues. This though, assumes
that media content is a single video stream, or that all media contents can be assembled into a single container ahead of
distribution. Importantly, the promise of the IP/Web domain is quite the opposite, with media experiences assembled
on consumer devices (i.e. late binding) leveraging a multitude of independent content sources, distribution mechanims
and production chains, as well as exploiting a variety of data formats and interactive rendering technologies. In this
world, different production chains may yield substantially different end-to-end delays, and low-latency streaming may
even contribute to the variation.

So, the core issue is not with data distribution, but rather with the user experience. Going back to the fundamentals,
media experiences have always been defined with a concept of presentation timeline at heart, as a basis for consistent
presentation/playback of media content. The core problem right now is that each content source defines its own
presentation timeline and simply expects the user to adopt it. Clearly, this approach does not scale beyond a single
content source. Instead, what is needed is:

1) A user timeline. An independent presentation timeline for the user experience

2) The ability to align the presentation timelines of each content source / media framework to the user timeline

3

https://www.w3.org/TR/2011/WD-html5-20110113/video.html
https://www.w3.org/TR/webaudio/
https://get.webgl.org/
https://www.w3.org/TR/web-animations-1/

timingsrc v3, Release 1.0

3) The ability to synchronize user timelines across connected devices, allowing consistent media experiences span-
ning multiple devices.

It appears that such a timeline concept will be central going forward, as linear media is gradually being re-invented
for the IP/Web domain, Yet the Web platform does not have such a concept. As gaps go, this gap is pretty significant.
And to be frank, rather embarrassing too. The Web is arguably the most important multi-media platform world wide.
Yet, ironically, multi-media playback is largely delegated to embedded frameworks, and cross framework playback is
simply not supported.

Timingsrc is a JavaScript framework adressing this gap. Timingsrc introduces a much needed programming model
for timing, synchronization and control on the Web. The central concept is the Timing Object. It provides a generic
timeline concept with time-controls and events. Media frameworks connected to a shared timing object may align their
internal presentation timelines precisely to the timing object and implement swift reactions to shared media control.
Furthermore, timing objects may be synchronized globally, if connected to online timing providers such as Shared
Motion Timing Provider for global synchroninization. An introduction to the Timing Object programming model is
published as the motion model in a book chapter titled Media Synchronization on the Web.

4 Chapter 1. Introduction

https://link.springer.com/chapter/10.1007/978-3-319-65840-7_17

CHAPTER 2

Module

2.1 Source code

Timingsrc at GitHub.

2.2 Include as script

<!DOCTYPE html>
<html>

<head>
<script type="text/javascript" src="https://webtiming.github.io/timingsrc/lib/

→˓timingsrc-v3.js">
</script>
<script type="text/javascript">

console.log(`hello world timingsrc version ${TIMINGSRC.version}!`);
</script>

</head>
<body>
</body>

</html>

Full source https://webtiming.github.io/timingsrc/lib/timingsrc-v3.js

Minified source https://webtiming.github.io/timingsrc/lib/timingsrc-min-v3.js

2.3 Include as ES6 module

<!DOCTYPE html>
<html>

(continues on next page)

5

https://github.com/webtiming/timingsrc
https://webtiming.github.io/timingsrc/lib/timingsrc-v3.js
https://webtiming.github.io/timingsrc/lib/timingsrc-min-v3.js

timingsrc v3, Release 1.0

(continued from previous page)

<head>
<script type="module">

import * as TIMINGSRC from "https://webtiming.github.io/timingsrc/lib/
→˓timingsrc-esm-v3.js";

console.log(`hello world timingsrc version ${TIMINGSRC.version}!`);
</script>

</head>
<body>
</body>

</html>

Full source https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js

Minified source https://webtiming.github.io/timingsrc/lib/timingsrc-min-esm-v3.js

2.4 Namespace

// utils
export * as utils from './util/utils.js';
export * as motionutils from './util/motionutils.js';
export {default as BinarySearch} from './util/binarysearch.js';
export {default as endpoint} from './util/endpoint.js';
export {default as eventify} from './util/eventify.js';
export {default as Interval} from './util/interval.js';
export {default as CueCollection} from './dataset/cuecollection.js';
export {default as Timeout} from './util/timeout.js';

// timing object
export {default as TimingObject} from './timingobject/timingobject.js';
export {default as SkewConverter} from './timingobject/skewconverter.js';
export {default as DelayConverter} from './timingobject/delayconverter.js';
export {default as ScaleConverter} from './timingobject/scaleconverter.js';
export {default as LoopConverter} from './timingobject/loopconverter.js';
export {default as RangeConverter} from './timingobject/rangeconverter.js';
export {default as TimeshiftConverter} from './timingobject/timeshiftconverter.js';
export {default as TimingSampler} from './timingobject/timingsampler.js';
export {default as PositionCallback} from './timingobject/positioncallback.js';

// timed data
export {default as Dataset} from './dataset/dataset.js';
export {default as Subset} from './dataset/subset.js';
import {default as PointModeSequencer} from './sequencing/pointsequencer.js';
import {default as IntervalModeSequencer} from './sequencing/intervalsequencer.js';
export function Sequencer(axis, toA, toB) {

if (toB === undefined) {
return new PointModeSequencer(axis, toA);

} else {
return new IntervalModeSequencer(axis, toA, toB);

}
};

// ui
export {default as DatasetViewer} from './ui/datasetviewer.js';
export {default as TimingProgress} from './ui/timingprogress.js';

(continues on next page)

6 Chapter 2. Module

https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js
https://webtiming.github.io/timingsrc/lib/timingsrc-min-esm-v3.js

timingsrc v3, Release 1.0

(continued from previous page)

export const version = "v3.0";

2.4. Namespace 7

timingsrc v3, Release 1.0

8 Chapter 2. Module

CHAPTER 3

Quickstart

This quickstart tutorial demonstrates playback of any kind of timed data.

3.1 Step 1 : Create a Webpage

Setup a webpage and initialise key timingsrc concepts:

• Timing Object for playback control

• Dataset for cue management

• Sequencer for cue playback

<!DOCTYPE html>
<html>

<head>
<script type="module">

import {TimingObject, Dataset, Sequencer, Interval} from "https://
→˓webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";

const to = new TimingObject();
const ds = new Dataset();
const activeCues = new Sequencer(ds, to);
...

</script>
</head>
<body>

<div id="cues"></div>
...

</body>
</html>

Also, unless the timing object is to be remote controlled by an external timing object, the webpage needs to define
some playback controls, for instance see: example-basic-controls.

9

timingsrc v3, Release 1.0

3.2 Step 2 : Load cues

There are no restrictions regarding data format or data source. As long as data can be made available within the
webpage, it can be used in timed presentation. In this example, we will simply use som mock data.

// mockup timed data
const data = [

{id:"a", text: 'A', start: 0, end: 1 },
{id:"b", text: 'B', start: 2, end: 3 },
{id:"c", text: 'C', start: 4, end: 5 },
{id:"d", text: 'D', start: 6, end: 7 },
{id:"e", text: 'E', start: 8, end: 9 },
...

];

// make cues
const cues = data.map(item => {

return {
key: item.id,
interval: new Interval(item.start, item.end),
data: item

};
});

// load into dataset
ds.update(cues);

3.3 Step 3 : Render dataset cues

In this example the dataset is assumed to be static. If the dataset is dynamic, use change, remove events to keep the
visualization up to date.

// construct a list from dataset cues
document.getElementById("cues").innerHTML = [...ds.values()]

.map(function(cue){
let text = JSON.stringify(cue.data);
if (activeCues.has(cue.key)) {

return `<div id=${cue.key} class="active">${text}</div>`;
} else {

return `<div id=${cue.key}>${text}</div>`;
}

})
.join("\n");

3.4 Step 4 : Render active cues

Finally, render active cues by specifying what happens when:

• an inactive cue becomes active

• an active cue becomes inactive

In this example, this is done simply by setting or removing the css classname active on cue list elements.

10 Chapter 3. Quickstart

timingsrc v3, Release 1.0

activeCues.on("change", (eArg, eInfo) => {
let el = document.getElementById(eArg.key);
if (el) {

el.classList.add("active");
}

});

activeCues.on("remove", (eArg, eInfo) => {
let el = document.getElementById(eArg.key);
if (el) {

el.classList.remove("active");
}

});

3.5 Ready

Ready to load the page and start controlling the timing object.

3.5. Ready 11

timingsrc v3, Release 1.0

12 Chapter 3. Quickstart

CHAPTER 4

Version

Timingsrc v3 is a major revision on timingsrc v2. The two versions are functionally equivalent. However, as version
3 makes adjustments to the API’s, v3 is not backwards compatible with v2.

4.1 Major changes

• In v2 the Sequencer did cue management internally and the Sequencer provided access both to cues and active
cues. In v3 cue management is made explicit by introducing the Dataset as an independent concept. In v3 the
pattern is to create a dataset an then to create one or more sequencers connected to the dataset.

• V2 had issues with efficiency as update batch sizes grew beyond O(1K) cues. V3 is a reimplementation with
efficiency in focus providing scalable performance measures for update batch sizes at least beyond O(100K),
see Dataset Performance.

• V3 simplifies and aligns API’s of dataset and sequencer. Both concepts are collections of cues with identical API
for cue access. Datasets are used for cue management, whereas sequencers are used for playback. A sequencer
provides a dynamic view into a the active cues of its dataset.

• In v3, dataset have become a valuable tool for management, lookup and visualization of timed data, useful also
without sequencers.

4.2 Minor changes

• Unsubscribe from events EventProviderInterface.off() is changed so that it takes a subscription
handle returned by EventProviderInterface.on().

• Event type events in v2 is renamed to batch, see Batch Event.

• The sequencer constructor signature changed from Sequencer(toA[, toB]) to Sequencer(dataset, toA[, toB]).

• Sequencers no longer support primitives for cue manipulation. This is now handled exclusively by the dataset,
see Dataset Update.

13

https://webtiming.github.io/timingsrc/

timingsrc v3, Release 1.0

• Sequencer events no longer contain detailed information about the cause of the event, such as movement direc-
tion and interval entry point.

• Sequencer no longer optimises precision of setTimeout as was the case in v2.

• V3 uses modern Javascripts features such as class, arrow functions and module imports.

• V3 also brings extensive code cleanup, refactoring, improved code design and more unittests for internal mod-
ules.

14 Chapter 4. Version

CHAPTER 5

Standardization

The W3C Multi-device Timing Community Group was created in 2015 to advocate standardization of the Timing
Object as the core part of a much needed timing model for the Web. As part of this initiative, a the Timing Object
Draft Specification was published and timingsrc was created as a reference implementaion for this proposal.

Since then, the Multi-device Timing Community Group has been included within the scope of the Media and Enter-
tainment Interest Group, responsible for standardization of Web technologies related to media. Multi-device Timing is
also included in the roadmap of the interest group. Beyond this, the Media and Entertainment Interest Group has not
yet addressed the gap concerning time controls across media components and frameworks.

Current standardization activities (2020) are still predominantly media centric as they mostly address synchronization
relative to HTML5 media playback. As a general approach though, this is both limiting and short sighted, making it
an unfortunate choice of timing model for the Web (see Media Synchronization on the Web).

The Timing Object is the foundation for a new timing model, opening up for synchronization and consistency across
media sources, media types, media components or media frameworks. Also, crucially, this timing model expands the
scope of synchronization and consistency from local media experiences (i.e. within a Web page) to globally distributed
media experiences.

Though no formal steps have been taken with respect to standardization of the Timing Object, the timingsrc JavaScript
implementation is ready to use. It has has been maturing through steady use since 2015, and recently it is seeing
increased usage from Web programmers around the world, not least after Corona. It seems the boost of online activity
is making issues with synchronization and consistency even more evident.

Note: The Timing Object Draft Specification has not been updated since its original publications, so deviations made
by the timingsrc implementation have yet not been included.

15

https://www.w3.org/community/webtiming/
http://webtiming.github.io/timingobject/
http://webtiming.github.io/timingobject/
\T1\textless {}https://github.com/webtiming/timingsrc/\T1\textgreater {}
https://www.w3.org/2011/webtv/
https://www.w3.org/2011/webtv/
https://w3c.github.io/web-roadmaps/media/
https://link.springer.com/chapter/10.1007/978-3-319-65840-7_17
\T1\textless {}https://github.com/webtiming/timingsrc/\T1\textgreater {}
http://webtiming.github.io/timingobject/
\T1\textless {}https://github.com/webtiming/timingsrc/\T1\textgreater {}

timingsrc v3, Release 1.0

16 Chapter 5. Standardization

CHAPTER 6

Contributions

6.1 Authors

Ingar M. Arntzen

• mailto://inar@norceresearch.no

• mailto://ingar.arntzen@motioncorporation.com

• https://github.com/ingararntzen

• https://www.linkedin.com/in/ingararntzen/

Njål T. Borch

• mailto://njbo@norceresearch.no

• mailto://njaal.borch@motioncorporation.com

• https://github.com/snarkdoof

• https://www.linkedin.com/in/njaal-borch-5754a11/

6.2 Acknowledgements

Version 1 of timingsrc were developed at Norut Northern Research Institute, now part of Norwegian Research Cen-
tre (NORCE), and funded in part by MediaScape, an EU FP7 project. Version 2 of timingsrc was developed and
maintained across several media projects at NORCE. Version 3 is a private contribution by Ingar Arntzen.

Ingar Arntzen is the main developer for Timing Object, Timing Converter, Dataset and Sequencer. Njål Borch is the
main developer for MediaSync, the adapter for synchronization of HTML5 media elements.

17

mailto://inar@norceresearch.no
mailto://ingar.arntzen@motioncorporation.com
https://github.com/ingararntzen
https://www.linkedin.com/in/ingararntzen/
mailto://njbo@norceresearch.no
mailto://njaal.borch@motioncorporation.com
https://github.com/snarkdoof
https://www.linkedin.com/in/njaal-borch-5754a11/
http://norut.no/
www.norceresearch.no
www.norceresearch.no

timingsrc v3, Release 1.0

18 Chapter 6. Contributions

CHAPTER 7

Demo TimingObject

This demonstrates control and rendering of the Timing Object.

• Control position, velocity or acceleration by clicking the buttons. P+1 means to increment the position. V=0 is
to set the velocity to zero

• Position may also be controlled by clicking the progress timeline.

Demo

demofile

7.1 Code

<!DOCTYPE html>
<html>

<head>

<style type="text/css">
.ctrl-label {

display:inline-block;
width:100px;

}
.ctrl-btn button {

width:50px;
}
.progress {

width: 100%; /* Full-width */
appearance: none;
border-radius: 5px;
height: 5px;
background: #d3d3d3; /* Grey background */

(continues on next page)

19

../_demoes/timingobject.html

timingsrc v3, Release 1.0

(continued from previous page)

outline: none;
}

</style>

<script type="module">

import {
TimingObject,
TimingSampler,
TimingProgress

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";

/*
Create TimingObject

*/
const to = new TimingObject({range:[0,10]});

/*
Visualize Timing Object Position

Either use timeupdate event for fixed frequency
sampling, or create sampler at custom frequency.

*/
const pos_elem = document.getElementById("position");
const vel_elem = document.getElementById("velocity");
const acc_elem = document.getElementById("acceleration");
const rng_elem = document.getElementById("range");

// refresh position every 100 ms
const sampler = new TimingSampler(to, {period:100});
sampler.on("change", function () {

let vector = to.query();
let rng = to.range;
pos_elem.innerHTML = `${vector.position.toFixed(2)}`;
vel_elem.innerHTML = `${vector.velocity.toFixed(2)}`;
acc_elem.innerHTML = `${vector.acceleration.toFixed(2)}`;
rng_elem.innerText = `[${rng}]`;

});

// progress
const progress_elem = document.getElementById("progress");
const progress = new TimingProgress(to,

progress_elem,
→˓{sampler:sampler});

/*
Connect buttons

*/
document.getElementById("p-").onclick = function () {

to.update({position:to.pos-1});
};
document.getElementById("p").onclick = function () {

to.update({position:0});
};
document.getElementById("p+").onclick = function () {

to.update({position:to.pos+1});
};

(continues on next page)

20 Chapter 7. Demo TimingObject

timingsrc v3, Release 1.0

(continued from previous page)

document.getElementById("v-").onclick = function () {
to.update({velocity:to.vel-1});

};
document.getElementById("v").onclick = function () {

to.update({velocity:0});
};
document.getElementById("v+").onclick = function () {

to.update({velocity:to.vel+1});
};
document.getElementById("a-").onclick = function () {

to.update({acceleration:to.acc-1});
};
document.getElementById("a").onclick = function () {

to.update({acceleration:0});
};
document.getElementById("a+").onclick = function () {

to.update({acceleration:to.acc+1});
};

</script>
</head>
<body>

<p>
<div style="font-weight:bold;">State</div>
<div>

Position:
</div>
<div>

Velocity:
</div>
<div>

Acceleration:
</div>
<div>

Range:
</div>

</p>
<p>

<input type="range" min="0" max="100" value="0" id="progress" class=
→˓"progress">

</p>
<p >

<div style="font-weight:bold;">Controls</div>
<div class="ctrl-btn">

Position:
<button id="p-">P-1</button>
<button id="p">P=0</button>
<button id="p+">P+1</button>

</div>
<div class="ctrl-btn">

Velocity:
<button id="v-">V-1</button>
<button id="v">V=0</button>
<button id="v+">V+1</button>

</div>
<div class="ctrl-btn">

(continues on next page)

7.1. Code 21

timingsrc v3, Release 1.0

(continued from previous page)

Acceleration:
<button id="a-">A-1</button>
<button id="a">A=0</button>
<button id="a+">A+1</button>

</div>
</p>

</body>
</html>

22 Chapter 7. Demo TimingObject

CHAPTER 8

Demo TimingConverter

This demonstrates a Timing Object and a Skew Converter.

• Control either one by clicking the buttons or the progress.

• Adjust the skew by clicking one of the set skew buttons.

Demo

demofile

8.1 Code

<!DOCTYPE html>
<html>

<head>

<style type="text/css">
.ctrl-label {

display:inline-block;
width:100px;

}
.ctrl-btn button {

width:80px;
}
.progress {

width: 100%; /* Full-width */
appearance: none;
border-radius: 5px;
height: 5px;
background: #d3d3d3; /* Grey background */
outline: none;

(continues on next page)

23

../_demoes/timingconverter.html

timingsrc v3, Release 1.0

(continued from previous page)

}
</style>

<script type="module">

import {
TimingObject,
TimingSampler,
TimingProgress,
SkewConverter

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";

const progress_options = {range:[0,13]};

/*
Create TimingObject

*/
const to = new TimingObject({range:[0,10]});
const to_pos_elem = document.getElementById("to_pos");

// progress
const to_progress_elem = document.getElementById("to_progress");
const to_progress = new TimingProgress(to,

to_progress_elem, progress_
→˓options);

/*
Connect buttons

*/
document.getElementById("to_reset").onclick = function () {

to.update({position:0});
};
document.getElementById("to_pause").onclick = function () {

to.update({velocity:0});
};
document.getElementById("to_play").onclick = function () {

to.update({velocity:1});
};
document.getElementById("to_reverse").onclick = function () {

to.update({velocity:-1});
};

/*
Skew Converter

*/
const c = new SkewConverter(to, 2);
const c_pos_elem = document.getElementById("c_pos");
const c_skew_elem = document.getElementById("c_skew");

// progress
const c_progress_elem = document.getElementById("c_progress");

const c_progress = new TimingProgress(c,
c_progress_elem, progress_options);

(continues on next page)

24 Chapter 8. Demo TimingConverter

timingsrc v3, Release 1.0

(continued from previous page)

/*
Connect buttons

*/
document.getElementById("c_reset").onclick = function () {

c.update({position:0});
};
document.getElementById("c_pause").onclick = function () {

c.update({velocity:0});
};
document.getElementById("c_play").onclick = function () {

c.update({velocity:1});
};
document.getElementById("c_reverse").onclick = function () {

c.update({velocity:-1});
};

// skew
document.getElementById("skew_1").onclick = function () {

c.skew = 1;
};
document.getElementById("skew_2").onclick = function () {

c.skew = 2;
};
document.getElementById("skew_3").onclick = function () {

c.skew = 3;
};

c.on("skewchange", () => {
c_skew_elem.innerHTML = `${c.skew.toFixed(2)}`;

});

/*
Sample positions of both timing object and converter

*/
const sampler = new TimingSampler(c, {period:200});
sampler.on("change", function () {

let to_pos = to.pos;
let c_pos = c.pos;
to_pos_elem.innerHTML = `${to_pos.toFixed(2)}`;
c_pos_elem.innerHTML = `${c_pos.toFixed(2)}`;
to_progress.refresh(to_pos);
c_progress.refresh(c_pos);

});

</script>
</head>
<body>

<p>
<div style="font-weight:bold;">Timing Object</div>
<div>

Position:

</div>
<div class="ctrl-btn">

<button id="to_reset">Reset</button>
<button id="to_play">Play</button>
<button id="to_pause">Pause</button>

(continues on next page)

8.1. Code 25

timingsrc v3, Release 1.0

(continued from previous page)

<button id="to_reverse">Reverse</button>
</div>
<input type="range" min="0" max="100" value="0" id="to_progress" class=

→˓"progress">
</p>
<p>

<div style="font-weight:bold;">Skew Converter</div>
<div>

Position:

</div>
<div>

Skew:

</div>
<div class="ctrl-btn">

 Set skew:
<button id="skew_1">1.0</button>
<button id="skew_2">2.0</button>
<button id="skew_3">3.0</button>

</div>

</p>
<p>

<div class="ctrl-btn">
<button id="c_reset">Reset</button>
<button id="c_play">Play</button>
<button id="c_pause">Pause</button>
<button id="c_reverse">Reverse</button>

</div>
<input type="range" min="0" max="100" value="0" id="c_progress" class=

→˓"progress">

</p>
</body>

</html>

26 Chapter 8. Demo TimingConverter

CHAPTER 9

Demo TimingProvider

This is a demo of online synchronization, based on the Shared Motion Timing Provider.

• Opening this page on multiple devices (or browser tabs) simultaneously to verify consistency.

• Reloade the demo on one device/tab while the demo is running on others.

• Shared Motion Timing Provider is hosted online, so others might be playing with the demo too.

Demo

demofile

9.1 Code

<!DOCTYPE html>
<html>
<head>

<style type="text/css">
.ctrl-btn button {

width:80px;
}

</style>

<script type="text/javascript" src="https://www.mcorp.no/lib/mcorp-2.0.js"></
→˓script>

<script type="module">

import {TimingObject} from "https://webtiming.github.io/timingsrc/lib/
→˓timingsrc-esm-v3.js";

const to = new TimingObject();

(continues on next page)

27

../_demoes/timingprovider.html

timingsrc v3, Release 1.0

(continued from previous page)

// MCorp App
const app = MCorp.app("8456579076771837888", {anon:true});
app.ready.then(function() {

to.timingsrc = app.motions["shared"];
});

// Hook up buttons UI
document.getElementById("reset").onclick = function () {

to.update({position:0});
};
document.getElementById("pause").onclick = function () {

to.update({velocity:0});
};
document.getElementById("play").onclick = function () {

to.update({velocity:1});
};
document.getElementById("reverse").onclick = function () {

to.update({velocity:-1});
};

// Hook up text UI
let pos_elem = document.getElementById('position');
to.on("timeupdate", function () {

pos_elem.innerHTML = `${to.pos.toFixed(2)}`;
});

</script>
</head>
<body>

<p>
<div>

Position:
</div>
<div class="ctrl-btn">

<button id="reset">Reset</button>
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="reverse">Reverse</button>

</div>
</p>

</body>
</html>

28 Chapter 9. Demo TimingProvider

CHAPTER 10

Demo MediaSync

Warning: The mediasync library currently has issues with Safari on iOS, presumably due to some subtle changes
concerning the media support on this platform. Please try with another browser if you are having issues.

Demo

This is a demo of HTML5 video synchronization using the Timing Object.

• Skip to a different position by clicking the timeline progress.

demofile

10.1 Code

<!DOCTYPE html>
<html>
<head>

<style type="text/css">
.ctrl-btn button {

width:80px;
}
.progress {

width: 100%; /* Full-width */
appearance: none;
border-radius: 5px;
height: 5px;
background: #d3d3d3; /* Grey background */
outline: none;

}

(continues on next page)

29

../_demoes/mediasync.html

timingsrc v3, Release 1.0

(continued from previous page)

#video {
display:inline;

}
</style>
<script type="text/javascript" src="https://www.mcorp.no/lib/mcorp-2.0.js"></

→˓script>
<script src="https://mcorp.no/lib/mediasync.js"></script>

<script type="module">

import {
TimingObject,
TimingSampler,
TimingProgress

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";

// timing object
const to = new TimingObject({range:[0,100]});

// MCorp App
const app = MCorp.app("8456579076771837888", {anon:true});
app.ready.then(function() {

to.timingsrc = app.motions["shared"];
});

// Hook up buttons UI
document.getElementById("reset").onclick = function () {

to.update({position:0});
};
document.getElementById("pause").onclick = function () {

to.update({velocity:0});
};
document.getElementById("play").onclick = function () {

to.update({velocity:1});
};
document.getElementById("reverse").onclick = function () {

to.update({velocity:-1});
};

// refresh position every 100 ms
const sampler = new TimingSampler(to, {period:100});

// position
const pos_elem = document.getElementById("position");
sampler.on("change", function () {

pos_elem.innerHTML = `${to.pos.toFixed(2)}`;
});

// progress
const progress_elem = document.getElementById("progress");
const progress = new TimingProgress(to,

progress_elem,
→˓{sampler:sampler});

// Set up video sync
const sync1 = MCorp.mediaSync(document.getElementById('player1'), to);

(continues on next page)

30 Chapter 10. Demo MediaSync

timingsrc v3, Release 1.0

(continued from previous page)

// Set up video sync
const sync2 = MCorp.mediaSync(document.getElementById('player2'), to);

</script>
</head>
<body>

<p>
<div>

Position:
</div>
<div class="ctrl-btn">

<button id="reset">Reset</button>
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="reverse">Reverse</button>

</div>
</p>
<p>

<input type="range" min="0" max="100" value="0" id="progress" class="progress
→˓">

</p>
<p>

<video id="player1" style="width:49%" autoplay>
<source src="https://mcorp.no/res/bigbuckbunny.webm" type="video/webm" />
<source src="https://mcorp.no/res/bigbuckbunny.m4v" type="video/mp4" />

</video>
<video id="player2" style="width:49%" autoplay>

<source src="https://mcorp.no/res/bigbuckbunny.webm" type="video/webm" />
<source src="https://mcorp.no/res/bigbuckbunny.m4v" type="video/mp4" />

</video>
</p>

</body>
</html>

10.1. Code 31

timingsrc v3, Release 1.0

32 Chapter 10. Demo MediaSync

CHAPTER 11

Demo Sequencer Point Mode

Sequencing timed data using a single Timing Object (see Point Mode).

• Data elements get activated (red) as the timingobject comes with their intervals (start, end).

• The set of active data elements is visualized just below the position.

• Skip to a different position by clicking the timeline progress.

• Remove data elements at any time by clicking the appropriate X button.

Demo

demofile

33

../_demoes/point_sequencer.html

timingsrc v3, Release 1.0

11.1 Code

<!DOCTYPE html>
<html>

<head>

<style type="text/css">
.ctrl-label {

display:inline-block;
width:100px;

}
.ctrl-btn button {

width:80px;
}
.progress {

width: 100%; /* Full-width */
appearance: none;
border-radius: 5px;
height: 5px;
background: #d3d3d3; /* Grey background */
outline: none;

}
.active {color:red}

</style>

<script type="module">
import {

TimingObject, Dataset, Sequencer, Interval,
TimingProgress, TimingSampler, DatasetViewer

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";

/*
Create TimingObject, Dataset and Sequencer

*/
const to = new TimingObject({range:[0,30]});
const ds = new Dataset();
const activeCues = new Sequencer(ds, to);

/*
Visualize Timing Object Position

*/

// refresh position every 100 ms
const sampler = new TimingSampler(to, {period:100});

// position
const pos_elem = document.getElementById("position");
sampler.on("change", function() {

pos_elem.innerHTML = `${to.pos.toFixed(2)}`;
});

// progress
const progress_elem = document.getElementById("progress");
const progress = new TimingProgress(to,

progress_elem,
→˓{sampler:sampler});

(continues on next page)

34 Chapter 11. Demo Sequencer Point Mode

timingsrc v3, Release 1.0

(continued from previous page)

/*
Connect buttons

*/
document.getElementById("play").onclick = function () {

to.update({velocity:1});
};
document.getElementById("pause").onclick = function () {

to.update({velocity:0});
};
document.getElementById("reverse").onclick = function () {

to.update({velocity:-1});
};
document.getElementById("reset").onclick = function () {

to.update({position:0, velocity:0});
};

/*
Mockup Timed Data

*/
const data = [

{id:"a", text: 'A', start: 0, end: 1 },
{id:"b", text: 'B', start: 2, end: 3 },
{id:"c", text: 'C', start: 4, end: 5 },
{id:"d", text: 'D', start: 6, end: 7 },
{id:"e", text: 'E', start: 8, end: 9 },
{id:"f", text: 'F', start: 10, end: 11 },
{id:"g", text: 'G', start: 12, end: 13 },
{id:"h", text: 'H', start: 14, end: 15 },
{id:"i", text: 'I', start: 16, end: 17 },
{id:"j", text: 'J', start: 18, end: 19 },
{id:"k", text: 'K', start: 20, end: 21 },
{id:"l", text: 'L', start: 22, end: 23 },
{id:"m", text: 'M', start: 24, end: 25 },
{id:"n", text: 'N', start: 26, end: 27 },
{id:"o", text: 'O', start: 28, end: 29 }

];

/*
Load timed cues into dataset

*/
const cues = data.map(item => {

return {
key: item.id,
interval: new Interval(item.start, item.end),
data: item

};
});
ds.update(cues);

/*
Visualize cues in dataset

*/

class CuesViewer extends DatasetViewer {

constructor(ds, activeCues, elem) {
super(ds, elem);

(continues on next page)

11.1. Code 35

timingsrc v3, Release 1.0

(continued from previous page)

this._activeCues = activeCues;

// listen for click events on root element
elem.addEventListener("click", e => {

// find cue key from div wrapping button
let key = e.path[1].id;
e.stopPropagation();
ds.removeCue(key);

})
}

cue2string(cue) {
let key = cue.key;
let text = JSON.stringify(cue.data);
if (this._activeCues.has(cue.key)) {

return `
<div id=${key} class="active">

<button>X</button>
${text}

</div>`;
} else {

return `
<div id=${key}>

<button>X</button>
${text}

</div>`;
}

}
}
let cues_elem = document.getElementById("cues");
let cues_viewer = new CuesViewer(ds, activeCues, cues_elem);

/*
Visualize active cues

*/
let active_elem = document.getElementById("active");
activeCues.on("change", (eArg, eInfo) => {

let el = document.getElementById(eArg.key);
if (el) {

el.classList.add("active");
}
active_elem.innerText = `${eArg.new.data.text}`;

});
activeCues.on("remove", (eArg, eInfo) => {

let el = document.getElementById(eArg.key);
if (el) {

el.classList.remove("active");
}
active_elem.innerText = "";

});

</script>

</head>
<body>

<p>
<div>

(continues on next page)

36 Chapter 11. Demo Sequencer Point Mode

timingsrc v3, Release 1.0

(continued from previous page)

Position:

</div>
<div>

Active:

</div>
</p>
<p>

<div class="ctrl-btn">
<button id="reset">Reset</button>
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="reverse">Reverse</button>

</div>
</p>
<p>

<input type="range" min="0" max="100" value="0" id="progress" class=
→˓"progress">

</p>
<p>
<div id="cues"></div>

</p>
</body>

</html>

11.1. Code 37

timingsrc v3, Release 1.0

38 Chapter 11. Demo Sequencer Point Mode

CHAPTER 12

Demo Sequencer Interval Mode

Sequencing timed data using two Timing Object (see Interval Mode).

• Data elements get activated (red) as their intervals (start, end) are overlapping with the interval between the two
timing objects.

• The set of active data elements is visualized just below the position.

• Skip to a different position by clicking the timeline progress.

• Remove data elements at any time by clicking the appropriate X button.

Demo

demofile

39

../_demoes/interval_sequencer.html

timingsrc v3, Release 1.0

12.1 Code

<!DOCTYPE html>
<html>

<head>

<style type="text/css">
.ctrl-label {

display:inline-block;
width:100px;

}
.ctrl-btn button {

width:80px;
}
.progress {

width: 100%; /* Full-width */
appearance: none;
border-radius: 5px;
height: 5px;
background: #d3d3d3; /* Grey background */
outline: none;

}
.active {color:red}
.active-cues {

color:red;
}

#activecues div {
display: inline-block;

}
</style>

<script type="module">
import {

TimingObject, Dataset, Sequencer, Interval,
TimingProgress, TimingSampler, SkewConverter,
DatasetViewer

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";

/*
Create TimingObject, Dataset and Sequencer

*/
const to = new TimingObject({range:[0, 30]});
const to2 = new SkewConverter(to, 4);
const ds = new Dataset();
const activeCues = new Sequencer(ds, to, to2);

/*
Visualize Timing Object Position

*/

// refresh position every 100 ms
const sampler = new TimingSampler(to, {period:100});

// position
const pos_elem = document.getElementById("position");
const pos_elem2 = document.getElementById("position2");

(continues on next page)

40 Chapter 12. Demo Sequencer Interval Mode

timingsrc v3, Release 1.0

(continued from previous page)

sampler.on("change", function() {
pos_elem.innerHTML = `${to.pos.toFixed(2)}`;
pos_elem2.innerHTML = `${to2.pos.toFixed(2)}`;

});

// progress
const progress_elem = document.getElementById("progress");
const progress2_elem = document.getElementById("progress2");
const progress_options = {sampler:sampler, range:[0,34]};
const progress = new TimingProgress(to,

progress_elem,
progress_options);

const progress2 = new TimingProgress(to2,
progress2_elem,
progress_options);

/*
Connect buttons

*/
document.getElementById("play").onclick = function () {

to.update({velocity:1});
};
document.getElementById("pause").onclick = function () {

to.update({velocity:0});
};
document.getElementById("reverse").onclick = function () {

to.update({velocity:-1});
};
document.getElementById("reset").onclick = function () {

to.update({position:0, velocity:0});
};

/*
Mockup Timed Data

*/
const data = [

{id:"a", text: 'A', start: 0, end: 1 },
{id:"b", text: 'B', start: 2, end: 3 },
{id:"c", text: 'C', start: 4, end: 5 },
{id:"d", text: 'D', start: 6, end: 7 },
{id:"e", text: 'E', start: 8, end: 9 },
{id:"f", text: 'F', start: 10, end: 11 },
{id:"g", text: 'G', start: 12, end: 13 },
{id:"h", text: 'H', start: 14, end: 15 },
{id:"i", text: 'I', start: 16, end: 17 },
{id:"j", text: 'J', start: 18, end: 19 },
{id:"k", text: 'K', start: 20, end: 21 },
{id:"l", text: 'L', start: 22, end: 23 },
{id:"m", text: 'M', start: 24, end: 25 },
{id:"n", text: 'N', start: 26, end: 27 },
{id:"o", text: 'O', start: 28, end: 29 }

];

/*
Load timed cues into dataset

(continues on next page)

12.1. Code 41

timingsrc v3, Release 1.0

(continued from previous page)

*/
const cues = data.map(item => {

return {
key: item.id,
interval: new Interval(item.start, item.end),
data: item

};
});
ds.update(cues);

/*
Visualize cues in dataset

*/

class CuesViewer extends DatasetViewer {

constructor(ds, activeCues, elem) {
super(ds, elem);
this._activeCues = activeCues;

// listen for click events on root element
elem.addEventListener("click", e => {

// find cue key from div wrapping button
let key = e.path[1].id;
e.stopPropagation();
ds.removeCue(key);

})
}

cue2string(cue) {
let key = cue.key;
let text = JSON.stringify(cue.data);
if (this._activeCues.has(cue.key)) {

return `
<div id=${key} class="active">

<button>X</button>
${text}

</div>`;
} else {

return `
<div id=${key}>

<button>X</button>
${text}

</div>`;
}

}
}
let cues_elem = document.getElementById("cues");
let cues_viewer = new CuesViewer(ds, activeCues, cues_elem);

/*
Visualize active cues in dataset

*/
activeCues.on("change", (eArg, eInfo) => {

let el = document.getElementById(eArg.key);
if (el) {

(continues on next page)

42 Chapter 12. Demo Sequencer Interval Mode

timingsrc v3, Release 1.0

(continued from previous page)

el.classList.add("active");
}

});

activeCues.on("remove", (eArg, eInfo) => {
let el = document.getElementById(eArg.key);
if (el) {

el.classList.remove("active");
}

});

/*
Visualize list of active cues

*/
class ActiveCuesViewer extends DatasetViewer {

cue2string(cue) {
return `${cue.data.text}`;

}
}
let active_cues_elem = document.getElementById("activecues");
let active_cues_viewer = new ActiveCuesViewer(activeCues, active_cues_

→˓elem);

</script>

</head>
<body>

<p>
<div>

Position 1:

</div>
<div>

Position 2:

</div>
<div>

Active:

</div>
</p>
<p>

<div class="ctrl-btn">
<button id="reset">Reset</button>
<button id="play">Play</button>
<button id="pause">Pause</button>
<button id="reverse">Reverse</button>

</div>
</p>
<p>

<input type="range" min="0" max="100" value="0" id="progress" class=
→˓"progress">

<input type="range" min="0" max="100" value="0" id="progress2" class=
→˓"progress">

</p>
<p>
<div id="cues"></div>

(continues on next page)

12.1. Code 43

timingsrc v3, Release 1.0

(continued from previous page)

</p>
</body>

</html>

44 Chapter 12. Demo Sequencer Interval Mode

CHAPTER 13

Timing Object

Contents

• Timing Object

– Introduction

– Definition

– Programming with Timing Objects

13.1 Introduction

<!DOCTYPE html>
<html>

<head>
<script type="module">

import {
TimingObject

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
const to = new TimingObject({range:[0,10]});

</script>
</head>
<body></body>

</html>

The timing object is a simple concept representing timeline state (e.g. media offset) and timeline controls (e.g.
play/pause). Similar constructs can be found in most media frameworks, yet typically they are internal to each frame-
work. The main purpose of the timing object is rather to provide a generic timeline construct to be used across media
frameworks (see Introduction).

45

timingsrc v3, Release 1.0

Demo

See Demo TimingObject

As illustrated by the demo, the timing object is similar to an advanced stop watch. If started with a velocity, its position
changes predictably in time, until at some point later, it is paused, or perhaps the position is reset. It may be queried
for its current position at any time. For example, it should take exactly 2.0 seconds for the position to advance from
3.0 to 5.0, if the velocity is 1.0. The timing object supports discrete jumps on the timeline, which may be useful for
controlling slide shows or playlists. Velocity is useful for the control of any linear/timed media, including continuous
media such as audio and video. Acceleration may not be commonly required, but it is there if you need it. Crucially,
the timing object provides a change event, emmitted every time its behavior has been altered. This allows timing
sensitive components to quickly detect changes and respond by correcting their behaviour accordingly.

A draft specification for the timing objects has been published with the W3C. The timing object concept was first
published under the name Media State Vector.

13.2 Definition

Timing objects are logical clocks, defined by an internal clock and a vector.

internal clock The internal clock of a timing object always counts seconds since some shared time origin. In tim-
ingsrc, the internal clock is based on performance.now. The time origin of performance.now relates to the
initialization of the Web page, so any timing object created within a single browsing context will all use the
same internal clock. Note that this internal clock has no relation to any external clock. Note also that perfor-
mance.now returns timestamps in milliseconds, so values are converted to seconds within the timing object
implementation.

internal vector The internal vector describes the initial state of the current movement of the timing object; (position,
velocity, acceleration, timestamp). The vector timestamp is from the internal clock of the timing object. Future
states of the timing object may be calculated precisely from the initial vector and elapsed time. Timing object
behaviour may easily be modified by supplying a new initial vector.

let vector = {
position: 12.0, // position (units)
velocity: 1.0, // velocity (units/second)
acceleration : 0.0, // acceleration (units/second/second)
timestamp : 7.234 // timestamp (seconds)

};

Timing objects may serve a variety of purposes within an application, so the value and unit of the timing object
position is application specific. However, in the context of media applications position would typically be the
duration since the beginning of some media session, in seconds.

query The query operation of the timing object is a cheap calculation useful for periodic sampling. It returns a fresh
vector snapshot, calculated from the internal vector.

function query(internal_clock, internal_vector) {
let pos = internal_vector.position;
let vel = internal_vector.velocity;
let acc = internal_vector.acceleration;
let ts = internal_vector.timestamp;
let now = internal_clock.now();
let delta = now - ts;
return {

(continues on next page)

46 Chapter 13. Timing Object

https://webtiming.github.io/timingobject/#the-timing-object
https://www.w3.org/
https://dl.acm.org/doi/abs/10.1145/2457413.2457427
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

timingsrc v3, Release 1.0

(continued from previous page)

position : pos + vel*delta + 0.5*acc*delta*delta,
velocity : vel + acc*delta,
acceleration : acc,
timestamp : now

};
}

update The update operation of the timing object accepts a vector specifying new values for position, velocity and
acceleration, used to reset the internal vector of the timing object. If say position is omitted from the new vector,
this means to preserve position as it was just before the update request was processed.

// play, resume
to.update({velocity:1.0});

// pause
to.update({velocity:0.0});

// jump to 10 and play from there
to.update({position:10.0, velocity:1.0})

// jump to 10, keep current velocity
to.update({position:10.0})

change event Whenever a timing object is updated, a change event is emitted from the timing object. The change
event represents the start of a new movement. By subscribing to change events, media frameworks and compo-
nents may monitor the timinig object and implement timely reactions to changes in timing object behavior.

// handle change event
to.on("change", () => {

let v = to.vector;
let moving = (v.velocity != 0.0 || v.acceleration != 0.0);
if (moving) {

console.log("moving!");
} else {

console.log("not moving!");
}

});

timeupdate event For convencience, timing objects also provide an event for periodic sampling of the timing object.
The timeupdate event is emitted at 5Hz (every 200 milliseconds) whenever the velocity (or acceleration) of the
timing object is non-zero. So, if the timing object is paused, no events are emmitted util the timing object is
unpaused.

// use timeupdate event to sample timing object position
to.on("timeupdate", function() {

console.log(to.query().position);
});

Alternatively, if a different sampling frequency is required, a timing sampler may be used.

const sampler = new TimingSampler(to, {period:50});
sampler.on("change", function () {

console.log(to.query().position);
});

rangechange event Event triggeres whenever the range is changed.

13.2. Definition 47

timingsrc v3, Release 1.0

13.3 Programming with Timing Objects

Timing objects are resources used by a Web application, and the programmer may define as many as required. What
purposes they serve in the application is up to the programmer. If the application needs a shared clock, simply starting
a timing object (and never stopping it) might be sufficient. If the timing object position should be milliseconds, set
the velocity to 1000 (advances the timing object position with 1000 milliseconds per second). If the timing object
represents media offset, specify the playback position, the velocity, and perhaps a media duration (range). For videos
where offset is measured in seconds or frames, set the velocity accordingly. Or, for certain musical applications it may
be practical to let the timing object position represent beats, given a fixed BPM (beats per minute). Note also that the
timing object may represent time-changes with any kind of floating-point variable. For instance, if data is organized
according to height above sea level, it might be appropriate to animate how data changes during continuous vertical
movement. In this case the timing object could represent meters or feet above sea level, and positive and negative
velocities would allow you to move gradually both upwards and downwards.

48 Chapter 13. Timing Object

CHAPTER 14

Timing Converter

Contents

• Timing Converter

– Introduction

– Definition

– Position-time diagrams

– Skew Converter

– Scale Converter

– Delay Converter

– Timeshift Converter

– Loop Converter

14.1 Introduction

<!DOCTYPE html>
<html>

<head>
<script type="module">

import {
TimingObject,
SkewConverter

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
const to = new TimingObject({range:[0,10]});
const c = new SkewConverter(to, 2);

(continues on next page)

49

timingsrc v3, Release 1.0

(continued from previous page)

</script>
</head>
<body></body>

</html>

Timing converters are useful when you need an alternative representation for a Timing Object. For example, co-
presentation of different media sources might be a problem if said media sources refer to different timelines. Given
that the relation between the timelines is known, this can be solved by either of the following approaches.

1) convert all timestamps of media sources to match the timeline of the timing object

2) convert a timing object to match the timeline of each media source

The second approach is often most attractive, as converting timestamps in media data may often be inconvenient,
costrly or otherwise undesireable. Simply converting the media clock is typically a much easier solution.

Demo

See Demo TimingConverter

So, as the name suggests, timing converters convert timing objects, for instance by skewing or scaling the timeline
of the original timing object. This may be useful in video playback, where the position of a timing object typically
represents media offset in seconds. In this case, a timing converter could be used to create and alternative representation
based on frame numbers, with playback velocity set to 24 or 25 frames per second (fps), depending on the media
format. Or, for music it might be sensible to use beat number as position, and beats per second (bps) as velocity.

14.2 Definition

A Timing Converter provides an alternative representation for a Timing Object.

• a timing converter is a timing object, which also depends on a parent timing object.

• the timingsrc property of a Timing Converter identifies its parent timing object.

• a timing converter implements some modification relative to its timingsrc, but never modifies its timingsrc in
any way.

• multiple timing converters may share timingsrc.

• a timing converter can itself be the timingsrc of another timing converter.

• a timing converter may forward update requests to the parent, converting the request into the parent timeline if
necessary.

So, a chain or hierarchy of timing converters may be created, where all timing converters ultimately depend on a
common timing object as root. Each timing converter typically provides a single modification. More complex modifi-
cations may for instance be created by combining multiple timing converters.

50 Chapter 14. Timing Converter

timingsrc v3, Release 1.0

14.3 Position-time diagrams

Position-time diagrams are helpful for illustrating the behavior of timing objects and timing converters. In the above
figure, the x-axis (horizontal) is time, and the y-axis (vertical) is the position of the timing object. The figure illustrates
a sequence of 4 updates to the timing object, where each circle is denoted by a circle. Initially (time 0) the position of
the timing object is 0.

1) start the timing object (positive velocity). The position increases linearly.

2) pause the timing object. Position remains unchanged.

3) starts the timing object backwards (negative velocity). Position decreases linearly.

4) pause the timing object at the exact moment when position becomes 0. (This may for instance be enforced by
the timing object itself, as a range restriction.)

14.4 Skew Converter

The effect of the skew converter is illustrated with red coloring. A positive skew is supplied, shifting all positions in
the positive direction.

14.3. Position-time diagrams 51

timingsrc v3, Release 1.0

14.5 Scale Converter

Scaling the by a factor means that all values (position, velocity and acceleration) are multiplied by that factor.

For example, a factor 1000 scales values in seconds to values in milliseconds. Velocity 1s/s becomes velocity
1000ms/s.

14.6 Delay Converter

Delay converter re-plays the behaviour of the timing object, with a fixed delay. Update events are delayed too. Delay
converters are read-only in the sence that they do not accept update requests.

52 Chapter 14. Timing Converter

timingsrc v3, Release 1.0

14.7 Timeshift Converter

Timeshift converter timeshifts the behavior of the timing object. Red color is ahead in time (speculative). Blue color
is after in time. When the position is static, time-shifting has no effect. The Timeshift converter does not timeshift
update events.

14.8 Loop Converter

The two dotted black lines illustrate a range restriction for the loop converter. When the timing object is inside this
range, the loop converter will be equal to the timing object. When the timing object is outside, its position is translated
to a value within the range, i.e. modulo of range length.

14.7. Timeshift Converter 53

timingsrc v3, Release 1.0

54 Chapter 14. Timing Converter

CHAPTER 15

Timing Provider

Contents

• Timing Provider

– Introduction

– External timing

– Custom Timing Providers

– Timing Provider Functionality

– Shared Motion Timing Provider

15.1 Introduction

// assign timing provider to timingsrc property of timing object
to.timingsrc = timing_provider;

A Timing Provider is a proxy object for a remote timing resource. Remote timing resources exist outside the Web
page (i.e. browsing context) of the timing object. The remote timing resource might live in another process on the same
computer or on a remote server. By acting as proxy, timingprovider objects allow a Timing Object to be connected to
a remote timing resource. If the remote timing resource is hosted online, this opens up for consistent media control in
the global scope.

Demo

See Demo TimingProvider

55

timingsrc v3, Release 1.0

15.2 External timing

The timingsrc programming model is based on the idea that consistency and shared media control is achieved by
shared access to timing objects. This idea is the focus of the Introduction, where timing objects are proposed for
consistency across media frameworks within a single Web page. Importantly, with online timing resources, this idea
can be extended to globally shared media experiences, without imposing additional complexity on the developers, see
Media Synchronization on the Web. As such, timing providers extend the scope of the timingsrc programming model
from local to global.

15.3 Custom Timing Providers

It might be possible to derive a standardized protocol for communication with remote timing services. However, in the
interest of future innovation this approach was not recommended by the Timing Object Draft Specification. Instead, the
proposal defines an API for timing provider proxy objects, opening up for custom implementations of timing services
and assiciated timing providers. This decoupling between specific timing services and application code maximizes
flexibilty, with the Timing Object as an in-between mediator.

15.4 Timing Provider Functionality

A timing provider (TP) runs client-side and exchanges messages between a client-side timing object (TC) and a
remote timing service (TS). In particular, TP will forward update request vectors from the timing object TS to the
remote timing service TS, and receive asynchronous notifications of vector updates in the opposite direction.

The overall goal is that timing objects connected to the same remote timing resorces are always equal. If queried at
the same time, all timing objects should yield the same results in terms of position, velocity and acceleration.

This though is not straight forward, since the clocks used by the remote timing service and timing objects (see Timing
Object) are generally not the same. To solve this, clock timestamps must be converted back and forth via a shared
clock, typically the clock of the remote timing resource. To do this conversion, the skew between the clocks must be
estimated:

Important: TS_CLOCK = TC_CLOCK + SKEW

The idea is that timing providers implement skew estimation, which can then be used by the timing object to do the
necessary conversions. This way, implementing a timing provider proxy object is reasonably easy.

1) Provide an estimate for SKEW. P must have access to TC_CLOCK. An estimate for TS_CLOCK must be
obtained by live messaging with TS. Likely, the SKEW estimate should be updated periodically to account for
clock drift or adjustments made to system clocks (e.g. NTP clock synchronization).

2) Forward request update vector from TC to TS, unchanged.

3) Forward notification update vector from TS to TC, unchanged.

Note: Direct forwarding of update notification in 3) implies that there is no mechanism for ensuring that vector
updates are applied at exactly the same time. Importantly though, updates will eventually have the same effect even
if they are not applied at the same time. Inconsistencies are limited to the brief duration when one timing object has
received an update while another has not. This is rarely noticed in practice.

56 Chapter 15. Timing Provider

https://link.springer.com/chapter/10.1007/978-3-319-65840-7_17
http://webtiming.github.io/timingobject/

timingsrc v3, Release 1.0

15.5 Shared Motion Timing Provider

Shared Motion is provided by Motion Corporation through InMotion, a generic, online timing service for IP-
connected clients and Web agents. Shared Motion by Motion Corporation can be used directly with the Timing Object.
To test this please follow these simple steps:

15.5.1 1. Create MCorp App

• goto https://dev.mcorp.no

• create MCorp App

• MOTION_NAME: create a named motion inside your app

• APPID: copy the APPID from your MCorp App

15.5.2 2. Connect Timing Object to Shared Motion

<!DOCTYPE html>
<html>

<head>
<script type="text/javascript" src="http://www.mcorp.no/lib/mcorp-2.0.js"></

→˓script>
<script type="module">

import {
TimingObject

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-module-v3.js";
const to = new TimingObject();
const app = MCorp.app("APPID", {anon:true});
app.ready.then(function() {

to.timingsrc = app.motions["MOTION_NAME"];
});

</script>
</head>
<body>
</body>

</html>

Documentation for MCorp App initialization at https://dev.mcorp.no

15.5. Shared Motion Timing Provider 57

http://motioncorporation.com
https://dev.mcorp.no
https://dev.mcorp.no

timingsrc v3, Release 1.0

58 Chapter 15. Timing Provider

CHAPTER 16

MediaSync

Contents

• MediaSync

– Introduction

– Reservations

16.1 Introduction

<!DOCTYPE html>
<html>

<head>
<script src="https://mcorp.no/lib/mediasync.js"></script>
<script type="module">

import {
TimingObject

} from "https://webtiming.github.io/timingsrc/lib/timingsrc-esm-v3.js";
const to = new TimingObject({range:[0,100]});
const sync = MCorp.mediaSync(document.getElementById('player'), to);

</script>
</head>
<body>

<video id="player" autoplay></video>
</body>

</html>

MediaSync is JavaScript wrapper for HTML5 media elements, allowing precisly timed playback and control for audio
and video on the Web, using the Timing Object. This is achived by adjusting the offset of the media element so that
it always matches the the timing object. The wrapper code periodically compares currentTime property of the media

59

timingsrc v3, Release 1.0

element with the position of the timing object. If the difference grows too large, larger adjustments are implemented
by seekTo operations whereas more gradual corrections are achived by modifications to the playbackrate.

Demo

See Demo MediaSync

MediaSync is a common purpose library. It is not optimised for any particular combination of OS, media codecs or
browser implementation. Despite this, and despite a number weaknesses in HTML5 media elements with respect to
precisely timed playback, MediaSync demonstrates the feasibility of echoless synchronization across the Internet. See
for instance this demonstration on YouTube. A technical report evaluating synchronization of HTML5 media elements
is available here.

The MediaSync JavaScript library is maintained by Motion Corporation and may be downloaded from their site:
https://mcorp.no/lib/mediasync.js.

16.2 Reservations

Support for precise synchronization of HTML5 media is experimental and subject to certain reservations.

1) Codecs and format issues are notorious for audio and video on the Web, and certain options/combinations may
hurt the ability for precise synchronization.

2) Synchronization of live media streams is possible, but depends on the session timeline being correctly tied to the
media content timeline. In particular, if the media player starts from currentTime 0 whenever the viewer session
starts, session timeline and content timeline are independent. If so, synchronization is not possible, unless the
relation between the two timelines may be derived by other means.

3) Repeated buffering due to limited data access is not a great starting point for precise synchronization.

4) Media capabilities vary accross platforms, and platform specific media issues may impact the support for precise
synchronization. For instance, IOS devices have issues with the implementation of variable playbackrate.

5) Stricter autoplay policies in Web browsers may require user involvement becore any playback can start.

6) Capability for precisely time controlled playback is currently not required (or even recommended) by W3C stan-
dards. For this reason, synchronization performance is not evaluated and new browser versions may therefore
include sudden changes that affect synchronization (for better or worse).

7) Timed media playback requires a short initializion phase before precise and stable playback can be achieved.
This is expected to take 0-3 seconds, and allows the media element to load data and home in on the correct
playback offset. If precicely timed playback is needed from the very start, one trick could be to pad the media
content with a preamble, allowing synchronization to be started a little earlier. In this case it might be attractive
to hide the media element until the original starting point is reached.

60 Chapter 16. MediaSync

https://www.youtube.com/watch?v=lfoUstnusIE
https://docs.google.com/document/d/1d2P3o3RZmilBx1MzMFFDDj5JnF8Yoi-t9EkJKzV90Ak/edit?usp=sharing
https://www.motioncorporation.com/
https://mcorp.no/lib/mediasync.js

CHAPTER 17

Interval

Contents

• Interval

– Introduction

– Definition

– Endpoint Types

– Endpoint Ordering

– Interval Comparison

– Interval Match

17.1 Introduction

Interval is used by Dataset and Sequencer to define the validity of objects or values in relation to a timeline. Intervals
describe either a continuous line segment or a singular point. In the context of media, intervals define the temporal
validity of timed media content.

17.2 Definition

Following standard mathematical notation intervals are expressed by two endpoint values low and high, where low <=
high. Interval endpoints are either open or closed, as indicated with brackets below:

e.g.: [a,b] [a,b) (a,b] (a,b)

If low == high the interval is said to represent a singular point [low, high], or simply [low] for short. Endpoints of
singular point intervals are always closed.

61

timingsrc v3, Release 1.0

Infinity values may be used to create un-bounded intervals. Endpoints with infinite values are always closed.

e.g.: [a, Infinity] [-Infinity, a] [-Infinity, Infinity].

// [4.0] - singular point
itv = new Interval(4.0);

// [4.0] - singular point
itv = new Interval(4.0, 4.0);

// [4,6.1) - interval
itv = new Interval(4.0, 6.1, true, false);

// (4,6.1) - interval
itv = new Interval(4.0, 6.1, false, false);

// [4,6.1] - interval
itv = new Interval(4.0, 6.1, true, true);

// (4,6.1] - interval
itv = new Interval(4.0, 6.1, false, true);

// [4,6.1) - default endpoints
itv = new Interval(4.0, 6.1);

// [4,->] - un-bounded
itv = new Interval(4.0, Infinity);

Note: Knowing how to create intervals is likely sufficient for basic usage of Dataset and Sequencer. The rest of
this section provides a reference for advanced usage and details concerning ordering and comparison of intervals on a
timeline.

17.3 Endpoint Types

Intervals are defined as a pair of interval endpoints. The table below shows that there are four distinct types of
endpoints, and that endpoints have three distinct properties

• value: numerical value

• bracket-side: true if high else low

• bracket-type: true if closed else open

symbol name value bracket-side bracket-type
[a low-closed a false true
(a low-open a false false
a] high-closed a true true
a) high-open a true false

Singular intervals have two endpoints [a and a], even though they only have one value. In order to distinguish endpoints
of a singular interval, boolean flag singular is added to the representation.

Endpoints are therefor represented by a four-tuple

[value, bracket-side, bracket-type, singular].

62 Chapter 17. Interval

timingsrc v3, Release 1.0

17.4 Endpoint Ordering

Correct ordering of points and endpoints is important for consistency of media state, media navigation and playback.
Ordering is straight forward as long as endpoint values are different in value. For instance, 2.2] is ordered before (3.1
because 2.2 < 3.1. However, in case of equality, sensitivity to properties bracket-side, bracket-type and singular is
required to avoid ambiguities.

The internal ordering of point p and the four endpoint types with value p is, from left to right:

p), [p, p, p], (p

Or, by name:

high-open, low-closed, value, high-closed, low-open

Endpoints of singular intervals are orders as regular values.

Based on this ordering we may define the comparison operators lt(e1, e2) and gt(e1, e2), where e1 and e2 are either
endpoints or regular points values.

lt(e1, e2) returns true if e1 is before e2, and false if e1 is equal to or after e2.

gt(e1, e2) returns true if e1 is after e2, and false if e1 is equal to or before e2.

17.5 Interval Comparison

Intervals may overlap partly, fully, or not at all. More formally, we define interval comparison in terms of interval
relations:

The operator cmp(a, b) compares interval a to interval b. The comparison yields one of seven possible
relasions: OUTSIDE_LEFT, OVERLAP_LEFT, COVERED, EQUAL, COVERS, OVERLAP_RIGHT,
or OUTSIDE_RIGHT.

The cmp(a,b) operator is then defined in terms of simpler operators lt, gt and inside. The operator inside(e, i) evaluates
to true if a point or an endpoint e is inside interval i. Interval i is in turn defined by its two endpoints i.low and i.high.

inside(e, i) = !lt(e, i.low) && !gt(e, i.high)

Interval relations OUTSIDE_LEFT, OVERLAP_LEFT, COVERED, EQUAL, COVERS, OVERLAP_RIGHT and
OUTSIDE_RIGHT are defined as follows:

17.4. Endpoint Ordering 63

timingsrc v3, Release 1.0

Fig. 1: This illustrates the different interval relations yielded by cmp(a,b) when seven diffent intervals A are compared
to the same interval B.

cmp(a, b) description definition
OUTSIDE LEFT a is outside b on the left

• a.high lt b.low

OVERLAP LEFT a overlaps b from left
• a.high is inside b
• a.low is gt b.low
• a.high is lt b.high

COVERED a is covered by b
• a.low inside b && a.high in-

side b
• b.low !inside a || b.high !in-

side a

EQUAL a is equal to a
• a.low inside b && a.high in-

side b
• b.low inside a && b.high in-

side a

COVERS a covers b
• a.low !inside b || a.high !in-

side b
• b.low inside a && b.high in-

side a

OVERLAP RIGHT a overlaps b from right
• a.low is inside b
• a.low is gt b.low
• a.high is gt b.high

OUTSIDE RIGHT a is outside b on the right
• a.low gt b.high

64 Chapter 17. Interval

timingsrc v3, Release 1.0

Here are a few examples of comparisons between intervals a and b.

a b cmp(a, b)
[2,4> [4] OUTSIDE_LEFT: a is outside b on the left
[2,4> <2,4] OVERLAP_LEFT: a overlaps b from left
[2,4> [2,4] COVERED: a is covered by b
[2,4> [2,4> EQUAL: a is equal to b
[2,4> <2,4> COVERS: a covers b
[2,4> <1,3> OVERLAP_RIGHT: a overlaps b from right
[2,4> <1,2> OUTSIDE_RIGHT: a is outside b on the right

17.6 Interval Match

The operation match(a, b, mask) returns true if interval a matches interval b. mask defines what interval relations
are accepted as a match. Each interval relation is associated with a mask value. Multiple relations may then be be
aggregated (AND’ed) into the appropriate mask.

mask int relation
0b1000000 64 OUTSIDE_LEFT
0b0100000 32 OVERLAP_LEFT
0b0010000 16 COVERED
0b0001000 8 EQUALS
0b0000100 4 COVERS
0b0000010 2 OVERLAP_RIGHT
0b0000001 1 OUTSIDE_RIGHT

The default value of match mask is 62 (0b0111110), which implies that all relations except OUTSIDE_LEFT and
OUTSIDE_RIGHT are counted as a match.

17.6. Interval Match 65

timingsrc v3, Release 1.0

66 Chapter 17. Interval

CHAPTER 18

Cue

A Cue is a triplet (key, interval, data) represented by a simple Javascript object.

let cue = {
key: "mykey",
interval: new Interval(2.2, 4.31),
data: {...}

};

key Unique key. Any value or object that may be used as a key with Map. The purpose of cue key is to uniquely
identify a cue object within a collection of cue objects.

interval Defines the validity of the cue in reference to a numerical dimension, typically a timeline. Intervals represent
a contiguous segment on the timeline or singular points (see Interval).

data The data property is an externally defined value or object associated with the cue. Typically, cue properties key
and interval are derived from values within the cue data object (see Cue Creation).

18.1 Cue Creation

Cues are typically created by wrapping application-defined data objects. These objects often include properties
which define object uniqueness, within some application specific namespace. Property names such as id, key and
uuid are often used for this purpose. If so, such object identifiers may be used as cue keys.

Additionally, application objects may define timestamps, durations or other numerical values indicating the validity
of the object in reference to a timeline. Property names such as ts, start, end and duration are often used for this
purpose. If so, cue interval objects may be created from these values.

// application object
let subtitle = {

id: 1234,
text: "This is some text",
start: 24.3,

(continues on next page)

67

timingsrc v3, Release 1.0

(continued from previous page)

end: 28.7
};

// cue from application object
let cue = {

key: subtitle.id,
interval: new Interval(subtitle.start, subtitle.end);
data: subtitle

};

68 Chapter 18. Cue

CHAPTER 19

Cue Collection

Contents

• Cue Collection

– Introduction

– Events

– Cue Ordering

19.1 Introduction

Cue Collection specifies an interface for a collection of (key, cue) pairs, extended with events.

Cue collection emulates the Javascript Map API by defining methods has(), get(), keys(), values() and entries(). Also,
the number of (key,cue) pairs managed by the cue collection is exposed by the property size.

Cue collection also defines three events: batch, change and remove. Events allow modifications of the cue collection
to be detected by subscribers. Events are implemented as defined in Events.

Note: The Cue Collection interface is only read-only and does not specify any mechanisms for modifying the
collection of (key, value) pairs. Methods for modification are left for specific implementations of the interface, such
as Dataset and Sequencer.

69

timingsrc v3, Release 1.0

19.2 Events

19.2.1 Modification Types

Cue collection supports two types of modifications: membership-modifications and cue-modifications:

membership-modifications Cues inserted into or deleted from the cue collection.

cue-modifications Modification of cues in cue collection.

19.2.2 Change and Remove

Cue collection defines events change and remove. Each event report modifications concerning an single (key, cue)
pair.

change

• inserted cues (membership-modification)

• modified cues (cue-modification)

remove

• deleted cues (membership-modification)

// cue collection
let cc;

cc.on("change", function(eArg) {
console.log("change")

});

cc.on("remove", function(eArg) {
console.log("remove")

});

Note: It would also have been possible to expose three events (insert, modify, delete) instead of two events (change,
remove). However, the latter is often more convenient, as insert and modify events are frequently handled the same
way. On the other hand, if the distincion matters the event argument of the change event may be used to tell them
apart. See Event Argument.

19.2.3 Batch Event

Cue collection additionally defines a batch event which delivers multiple change and remove together. This is relevant
for implementations supporting modification of multiple cues in one (atomic) operation. If so, the batch event makes
it possible to process concurrent events in one operation, and making decisions based on the whole batch, as opposed
to single events.

The event argument eArg of the batch event is simply a list of event arguments for individual change and remove
events.

// cue collection
let cc;

(continues on next page)

70 Chapter 19. Cue Collection

timingsrc v3, Release 1.0

(continued from previous page)

cc.on("update", function (eArgList) {
eArgList.forEach(function(eArg) {

if (eArg.new != undefined) {
if (eArg.old != undefined) {

console.log("modify");
} else {

console.log("insert");
}

} else {
if (eArg.old != undefined) {

console.log("delete");
} else {

console.log("noop");
}

}
});

});

Note: Cue collection may emit a batch event including event arguments where both eArg.new and eArg.old are
undefined, i.e. noop events.

19.2.4 Event Argument

Cue collection events provide an event argument eArg describing the modification of a single cue. The event argument
is a simple object with properties key, new and old:

// Event Argument
let eArg = {key: ..., new: {...}, old: {...}}

key key (unique in cue collection)

old cue before modification, or undefined if cue was inserted.

new cue after modification, or undefined if cue was deleted.

This table show values eArg.old and eArg.new may assume for different events and modification types.

modification event eArg.old eArg.new
insert change undefined cue
modify change cue cue
delete remove cue undefined
noop undefined undefined

Distinguishing between modification types is easy:

// cue collection
let cc;

cc.on("change", function(eArg) {
if (eArg.old == undefined) {

console.log("insert");
} else {

(continues on next page)

19.2. Events 71

timingsrc v3, Release 1.0

(continued from previous page)

console.log("modify");
}

});

cc.on("remove", function(eArg) {
console.log("delete")

});

19.3 Cue Ordering

By default cue collections do not enforce a particular ordering for its (key, cue) pairs. If needed, order may be specified
on the constructor. The cues() method will then returne an ordered list of cues. In addition, cue events will be delivered
in the correct order. Ordering options may also be supplied directly to the CueCollection.cues() and will take
precedence over constructor options. This applies for both Dataset and Sequencer, which are both cue collactions.

// order by keys
function cmp(cue_a, cue_b) {

return cue_a.key < cue_b.key;
}

let cc = new CueCollection({order:cmp})

// unordered iterator of cues
let cues_iterator = cc.values()

// ordered list of cues
let cues_list = cc.cues();

72 Chapter 19. Cue Collection

CHAPTER 20

Dataset

Contents

• Dataset

– Introduction

– Example

– Update

– Update Convenience Methods

– Lookup

– Events

– Cue Ordering

– Performance

20.1 Introduction

Dataset manages a collection of cues, implements the Cue Collection and adds support for flexible and efficient cue
modification and lookup, even for large volumes of cues. Cues are simple Javascript objects:

let cue = {
key: "mykey",
interval: new Interval(2.2, 4.31),
data: {...}

}

Dataset maps keys to cues, like a Map. In addition, cues are also indexed by their positioning on the timeline (see
Interval), allowing efficient search along the timeline. For instance, the lookup method returns all cues within a given

73

timingsrc v3, Release 1.0

lookup interval.

Dataset is useful for management and visualization of large datasets with timed data, represented as cues. Typical
examples of timed data include log data, user comments, sensor measurements, subtitles, images, playlists, transcripts,
gps coordinates etc.

Furthermore, the dataset is carefully designed to support precisely timed playback of timed data. This is achieved by
connecting one or more Sequencers to the Dataset.

Fig. 1: This illustrates multiple tracks (different colors) of timed data. Each colored line segment is a cue, with
horizontal placement and length indicating cue validity in reference to the timeline. Tracks may simply be different
types of cues, e.g. comments, gps-coordinates, videos, images, audio snippets, etc. A single dataset may hold all kinds
of cues, collectively defining the state of a media presentation, see Linear Media State.

20.2 Example

// create dataset
let ds = new Dataset();

// timed data
let subtitles = [

{
id: "1234",
start: 123.70,
end: 128.21,
text: "This is a subtitle"

},
...

];

// create cues from subtitles data
let cues = subtitles.map(function (sub) {

let itv = new Interval(sub.start, sub.end);
return {key: sub.id, interval: itv, data: sub};

});

(continues on next page)

74 Chapter 20. Dataset

timingsrc v3, Release 1.0

(continued from previous page)

// insert cues
ds.update(cues);

// lookup cues
let result_cues = ds.lookup(new Interval(120, 130));

// delete cues
ds.update(cues.map(function(cue) {

return {key: cue.key};
});

20.3 Update

Dataset provides a single operation update(cues) allowing cues to be inserted, modified and/or deleted. The argu-
ment cues defines a list of cue arguments (or a single cue argument) to be inserted into the dataset. If a cue with
identical key already exists in the dataset, the pre-existing cue will be modified to match the provided cue argument.
If a cue argument includes a key but no interval and no data, this means to delete the pre-existing cue.

let ds = new Dataset();

// insert
ds.update({

key: "key1",
interval: new Interval(2.2, 4.31),
data: "foo"

});

// modify
ds.update({

key: "key2",
interval: new Interval(4.4, 6.9, false, false),
data: "bar"

});

// delete
ds.update({key: "mykey"})

For convenience, intervals in cue arguments may also be specified as an array, leaving it to the dataset to create Interval
objects for internal use. Also, addCue and removeCue methods provide shorthand access to update. For instance,
the above code example may be rewritten as follows:

let ds = new Dataset();
ds.addCue("key1", [2.2, 4.31], "foo");
ds.addCue("key2", [4.4, 6.9, false, false], "bar");

See also Update Convenience Methods for more details.

20.3.1 Cue Management

When a cue is inserted into the dataset, it will be managed until it is deleted at some later point. All cue access
operations (e.g. cues, lookup) provide direct access to managed cues.

20.3. Update 75

timingsrc v3, Release 1.0

Warning: Cues managed by dataset are considered immutable and must never be modified directly by applica-
tion code. Always use the update operation to implement cue modification.

If managed cue objects are modified by external code, no guarantees can be given concerning functional correct-
ness. By default, the dataset does not offer any protection against external cue modification. However, in safe mode
Object.freeze() is applied to all cues, implying that attempted modification should throw an exception (strict mode).
This is useful for evaluation but should likely be turned off in production, as use of Object.freeze() comes with a
performance penalty.

let ds = new Dataset({safe:true})

Important:

• always create cue arguments as new objects with desired state

• never reuse managed cue objects as arguments to update

The dataset will throw an exception if a currently managed cue object is used as cue argument with the update
operation.

Unwanted modifications of managed cues may also occur if the cue.data property is subject to external modification.
Object.freeze() does not protect against this. For instance, the data object may a reference to an object which is
managed by an application specific data model. If this is the case one approach would be to copy data objects as part
of cue creation. Another approach is to add one level of indirection, adding only immutable object id’s to the dataset.
This though would imply that data changes can not be detected by the dataset.

20.3.2 Cue Arguments

Dataset also supports partial cue modification. Partial modification means to modify only the cue interval property
or only the cue data property. For convenience, partial cue modification allows this to be done without restating the
unmodified part of the cue. Partial cue modification is specified simply by omitting the property which is not to be
replaced. The omitted property will then be preserved from the pre-existing cue. This yields four types of legal cue
arguments for the update operation:

Type Cue argument Text
A {key: “mykey”} no interval, no data
B {key: “mykey”, interval: . . . } interval, no data
C {key: “mykey”, data: . . . } no interval, data
D {key: “mykey”, interval: . . . , data: . . . } interval, data

Note: Note that {key: "mykey"} is type A whereas {key: "mykey", data:undefined} is type C.
The type evaluation is based on cue.hasOwnProperty("data") rather than cue.data === undefined.
This ensures that undefined may be used as a data value with cues.

Similarly, cue intervals may also take the value undefined. Without an interval cues become invisible to the lookup
operation, yet still accessible through Map operations has, get, keys, values, entries. Otherwise, if cue interval is
defined, it must be an instance of the Interval class.

Note: Cue intervals are often derived from timestamps which are also part of cue data. This implies that inconsistency

76 Chapter 20. Dataset

timingsrc v3, Release 1.0

may be introduced, if the interval is changed, without also changing the associated timestamps in the data property –
or the other way around.

Though not criticial for the integrity of the dataset, such inconsistencies might be confusing for users. For instance if
timeline playback does not match timestamps in cue data.

Rule of thumb:

• Avoid cue type B modification if timestamps are part of data.

• Similarly, avoid type C modification of timestamps in data, if cue intervals are derived from these timestamps.

In summary, the different types of cue arguments are interpreted according to the following table.

Type Cue NOT pre-existing Cue pre-existing
A NOOP DELETE cue
B INSERT interval, data undefined MODIFY interval, PRESERVE data
C INSERT data, interval undefined MODIFY data, PRESERVE interval
D INSERT cue MODIFY cue

20.3.3 Cue Equality

Cue modification has no effect if cue argument is equal to the pre-existing cue. The dataset will detect equality of
cue intervals and avoid unneccesary reevaluation of internal indexes. However, the definition of object equality for
cue data may be application dependent. For this reason the update operation allows a custom equality function to be
specified using the optional parameter equals. Note that the equality function is evaluated with the cue data property
as arguments, not the entire cue.

function equals(a, b) {
...
return true;

}

ds.update(cues, {equals:equals});

The default equality function used by the dataset is the following:

function equals(a, b) {
// Create arrays of property names
let aProps = Object.getOwnPropertyNames(a);
let bProps = Object.getOwnPropertyNames(b);
let len = aProps.length;
let propName;
// If properties lenght is different => not equal
if (aProps.length != bProps.length) {

return false;
}
for (let i=0; i<len; i++) {

propName = aProps[i];
// If property values are not equal => not equal
if (a[propName] !== b[propName]) {

return false;
}

}
// equal

(continues on next page)

20.3. Update 77

timingsrc v3, Release 1.0

(continued from previous page)

return true;
}

Given that object equality is appropriately specified, update operations may safely be repeated, even if cue data have
not changed. For instance, this might be the case when an online source of timed data is polled repeatedly for updates.
Results from polling may then be forwarded directly to the update operation. The return value will indicate if any
actual modifications occured.

20.3.4 Update Result

The update operation returns an array of items describing the effects for each cue argument. Result items are identical
to event arguments eArg defined in Event Argument.

// update result item
let item = {key: ..., new: {...}, old: {...}}

key Unique cue key

old Cue before modification, or undefined if cue was inserted.

new Cue after modification, or undefined if cue was deleted.

It is possible with result items where both item.new and item.old are undefined. For instance, this will be the case if
a cue is both inserted and deleted as part of a single update operation (see Batch Operations).

20.3.5 Batch Operations

The update() operation is batch-oriented, implying that multiple cue operations can be processed as one atomic
operation. A single batch may include a mix of insert, modify and delete operations.

let ds = new Dataset();

let cues = [
{

key: "key_1",
interval: new Interval(2.2, 4.31),
data: "foo"

},
{

key: "key_2",
interval: new Interval(4.4, 6.9),
data: "bar"

}
];

ds.update(cues);

Batch oriented processing is crucial for the efficiency of the update operation. In particular, the overhead of reeval-
uating internal indexes may be paid once for the accumulated effects of the entire batch, as opposed to once per cue
modification.

Warning: Repeated invocation of update within a single processing task is an anti-pattern with respect to
performance! Cue operations should if possible be aggregated and applied together as a single batch.

78 Chapter 20. Dataset

timingsrc v3, Release 1.0

// cues
let cues = [...];

// NO!
cues.forEach(function(cue)) {

ds.update(cue);
}

// YES!
ds.update(cues);

20.3.6 Cue Chaining

It is possible to include several cue arguments concerning the same key in a single batch to update. This is called
chained cue arguments. Chained cue arguments will be applied in the given order, and the net effect in terms of cue
state will be equal to the effect of splitting the cue batch into individual invokations of update. Internally, chained cue
arguments are collapsed into a single cue operation with the same net effect. For instance, if a cue is first inserted and
then deleted within a single batch, the net effect is no effect.

Correct handling of chained cue arguments introduces an extra test within the update operation, possibly making it
slightly slower for very large cues batches. If the cue batch is known to not include any chained cue arguents, this may
be indicated by setting the option chaining to false. The default value for chaining is true.

ds.update(cues, {chaining:false});

Warning: If the chaining option is set to false, but the cue batch still contains chained cue arguments, this
violation will not be detected. The consequences are not grave. The old value of result items and event arguments
will be incorrect for chained cues.

20.4 Update Convenience Methods

The dataset defines a few convenience methods for updating the dataset implemented on top of the basic update
primitive. Single cue operations addCue for inserting or modifying a cue and removeCue to delete a cue. These
operations support Batch Operations through repeated invocation. Cue arguments will be buffered by an internal
builder object and submitted as a single update operation on the dataset, just after the current JS task has completed.
The result from the update operation is availble on a updateDone promise.

ds
.addCue("key_1", new Interval(1,2), data)
.removeCue("key_2")
.addCue("key_1", new Interval(1,3), data);

ds.updateDone.then((result) => {console.log(result)});

Note: Once resolved, the updateDone promise is replaced by a new promise for the next update operation, but still
available on the same updateDone property. So, for later update results just access the updateDone getter property
again.

20.4. Update Convenience Methods 79

timingsrc v3, Release 1.0

function show_result(update_result) {
console.log("update result");

}

ds.updateDone.then(show_result);
ds.addCue("k", new Interval(612, 10000), "k")

setTimeout(() => {
ds.addCue("l", new Interval(614, 10000), "l");
ds.updateDone.then(show_result);

}, 1000);

To specify options for Batch Operations use a custom builder object.

let options;
let builder = ds.makeBuilder(options);

builder.updateDone.then(()=>{console.log("result")});
builder

.addCue("key_1", new Interval(1,2), data);

.removeCue("key_2");

.clear();

Tip: For interactive use _addCue and _removeCue avoid buffering cue arguments by using the update primitive
directly.

let update_result = ds._addCue("key_1", new Interval(1,2), data);

20.5 Lookup

The operation lookup(interval, mask) identifies all cues matching a specific interval on the timeline. The param-
eter interval specifices the target interval and mask defines what interval relations count as a match, see Interval
Match. Similarly, dataset provides an operation lookup_delete(interval, mask) which deletes all cues matching a
given interval. This operation is more efficient than lookup followed by cue deletion using update.

20.5.1 Lookup endpoints

In addition to looking up cues, dataset also supports looking up cue endpoints. The operation
lookup_endpoints(interval) identifies all cue endpoints inside the given interval, as defined in Interval Compari-
son. The operation returns a list of (endpoint, cue) pairs, where endpoint is the low or the high endpoint of the cue
interval.

{
endpoint: [value, high, closed, singular],
cue: {

key: "mykey",
interval: new Interval(...),
data: {...}

}
}

80 Chapter 20. Dataset

timingsrc v3, Release 1.0

The endpoint property is defined in Endpoint Types.

20.6 Events

Dataset supports three events batch, change and remove, as defined in Cue Collection.

20.7 Cue Ordering

See Cue Ordering.

20.8 Performance

The dataset implementation targets high performance with high volumes of cues. In particular, the efficiency of
the lookup operation is important as it is used repeatedly during media playback. The implementation is therefor
optimized with respect to fast lookup, with the implication that internal costs related to indexing are paid by the
update operation.

The lookup operation depends on a sorted index of cue endpoints, and sorting is performed as part of the update
operation. For this reason, update performance is ultimately limited by sorting performace, i.e. Array.sort(),
which is O(NlogN) (see sorting complexity). Importantly, support for batch operations reduces the sorting overhead
by ensuring that sorting is needed only once for a each batch operation, instead of repeatedly for every cue argument.
The implementation of lookup uses binary search to identify the appropriate cues, yielding O(logN) performance. The
crux of the lookup algorithm is to resolve the cues which COVERS (see :ref:’interval-comparison’) the lookup interval
in sub linear time.

To indicate the performance metrics of the dataset, some measurements have been collected for common usage pat-
terns. For this particular test a standard laptop computer is used (Lenovo ThinkPad T450S, 4 cpu Intel Core i5-53000
CPU, Ubuntu 18.04). Tests are run with Chrome and Firefox, with similar results. Though results will vary between
systems, these measurements should at least give a rough indication.

Update performance depends primarily the size of the cue batch, but also a few other factors. The update operation
is more efficient if the dataset is empty ahead of the operation. Also, since the update operation depends on sorting
internally, it matters if the cues are mostly sorted or random order.

Tests operate on cue batches of size 100.000 cues, which corresponds to 200.000 cue endpoints. Results are given in
milliseconds.

20.6. Events 81

https://blog.shovonhasan.com/time-space-complexity-of-array-sort-in-v8/

timingsrc v3, Release 1.0

INSERT 100.000 sorted cues into empty dataset 278
INSERT 100.000 random cues into empty dataset 524
INSERT 100.000 sorted cues into dataset with 100.000 cues 334
INSERT 100.000 random cues into dataset with 100.000 cues 580
INSERT 10 cues into dataset with 100.000 cues 2
LOOKUP 100.000 endpoints in interval from dataset of 100.000 cues 74
LOOKUP 20 endpoints from dataset with 100.000 cues 1
LOOKUP 50.000 cues in interval from dataset of 100.000 cues 80
LOOKUP 10 cues in interval from dataset of 100.000 cues 1
LOOKUP_DELETE 50.000 cues in interval from dataset with 100.000 cues 100
LOOKUP_DELETE 10 cues in interval from dataset with 100.000 cues 1
DELETE 50.000 random cues from dataset with 100.000 cues 280
DELETE 10 random cues from dataset with 100.000 cues 10
CLEAR Clear dataset with 100.000 cues 29

The results show that the dataset implementation is highly efficient for lookup operations and update operations with
modest cue batches, even if the dataset is preloaded with a large volume of cues (100.000). In addition, (not evident
from this table) update behaviour is tested up to 1.000.000 cues and appears to scale well with sorting costs. However,
batch sizes beyond 100.000 are not recommended, as this would likely hurt the responsiveness of the webpage too
much. To maintain responsiveness it would make sense to divide the batch in smaller parts and spread them out in
time. Use cases requiring loading of over 100.000 cues might also be rare in practice.

82 Chapter 20. Dataset

CHAPTER 21

Sequencer

Contents

• Sequencer

– Introduction

– Linear Media State

– Definition

– Programming Model

– Sequencer Modes

– Cue ordering

– Events

– Cue Ordering

21.1 Introduction

The Sequencer implements precisely timed playback of timed data. Playback is controlled using one or two Timin-
gObjects. Timed data is represented as cues managed by a Dataset.

Demo

Demo Sequencer Point Mode sequencing timed data using a single timing object (see Point Mode).

Demo Sequencer Interval Mode sequencing timed data using two timing objects (see Interval Mode).

83

timingsrc v3, Release 1.0

21.2 Linear Media State

Continuous media experiences require media state to be well defined along its timeline. For discrete media content,
cues tied to points or intervals on the timeline is a simple and efficient mechanism for achieving this goal:

At any given point p on the timeline, the media state at point p is given by the set of all cues with an
interval covering point p.

For instance, by using cues with back-to-back intervals . . . [a,b), [b,c), . . . one may ensure that the entire timeline is
covered by media content. The use of open and closed brackets removes any ambiguity regarding the media state at
interval endpoints.

Importantly, this definition is also a solid basis for implementing navigation and playback of the media state. For
example, jumping from one point to another on the timeline requires a quick transition between two different media
states, i.e. deactivation of some cues and activation of others. Furthermore, during continuous media playback, cues
must be activated and deactivated at the correct time and in the correct order.

The sequencer encapsulates all of this, leaving the programmer to specify appropriate actions as cues become active
and inactive, by implementing handlers for sequencer change and remove events.

21.3 Definition

• The sequencer implements Cue Collection and holds a subset of the cues managed by its source Dataset.

• At any time, the sequencer holds the particular subset of cues that are active cues.

• The sequencer emits change, remove and batch events (see: Cue Collection) as cues are activated or deacti-
vated during playback.

Active cues Cues are active or inactive based on the playback position, and how it compares to the cue interval,
which defines the validity of the cue on the timeline. The sequencer may well be an empty collection, if no cues
are active at a particular time.

Precisely timed events As playback position gradually changes during timed playback, cues must be activated or
deactivated at the correct time. The sequencer dynamically manipulates its own cue collection and precisely
schedules change and remove events (see: Cue Collection) for activation and deactivation of cues.

Flexible timeline navigation and playback Sequencers have full support for all kinds of navigation and playback
allowed by Timing Object. This includes jumping on the timeline, setting the playback velocity, backwards
playback and even accelerated playback. For instance, jumping on the timeline might cause all active cues to be
deactivated, and a new set of cues to be activated.

Dynamic dataset Sequencers support dynamic changes to its source Dataset, at any time, also during playback. Cues
added to the dataset will be activated immediately if they should be active. Cues removed from the dataset will
be deactivated, if they were active. Modified cues will stay active, stay inactive, be activated or be deactived,
whichever is appropriate.

Sequence of timed events The change and remove events of the sequencer provide the full storyline (i.e. sequence
of transitions) for the set of active cues. This also includes initialization, due to the Initial Events semantics
of the change event. The change event will initially emit cues that are already active - immediately after the
subscription is made. After that, change and remove events will communicate all subsequent changes, including
changes to cue data.

84 Chapter 21. Sequencer

timingsrc v3, Release 1.0

21.4 Programming Model

From the perspective of the programmer, the sequencer is a dynamic, read-only view into a Dataset of cues. The
view can always be trusted to represent the set of active cues correctly, and to communicate all future changes as
change and remove events, at the correct time. This makes for an attractive programming model, where precisely
timed playback-visualizations of timed data can be achieved simply by implementing handlers for sequencer events.
In other words, the programmer only needs to specify what it means for a cue to become active or inactive.

As such, the sequencer encapsulates all the timing-related complexity, and transforms the challenge of time-driven
visualization into a challenge of data-driven visualization. Reactive data visualization is already a rich domain with
mature practices and a broad set of tools and frameworks to go with them. So, the sequencer essentially bridges the
gap; allowing timed visualizations to reap the fruits of modern data visualation tools.

from data-driven to time-driven visualization

As a trivial example, this demonstrates playback of subtitles in a Web page (without the need for a video).

1 /*
2 Simplistic subtitle playback
3

4 const subtitles = [{
5 id: "1234",
6 start: 123.70,
7 end: 128.21,
8 text: "This is a subtitle"
9 }, ...]

10 */
11

12 let ds = new Dataset();
13 let to = new TimingObject();
14 let activeCues = new Sequencer(ds, to);
15

16 // subtitle DOM element
17 let elem = document.getElementById("subtitle");
18

19 // create and load cues
20 let cues = subtitles.map(sub => {
21 let itv = new Interval(sub.start, sub.end);
22 return {key: sub.key, interval: itv, data: sub};
23 });
24 ds.update(cues);
25

26 activeCues.on("change", function (eArg) {
27 // activated subtitle
28 elem.innerHTML = eArg.new.data.text;
29 });
30

31 activeCues.on("remove", function (eArg) {
32 // deactivate subtitle
33 elem.innerHTML = "";
34 });
35

36 // start playback !
37 to.update({velocity:1});

Note: Note how the application-specific part of this example is only a few lines of code (highlighted lines) limited to

21.4. Programming Model 85

timingsrc v3, Release 1.0

making cues from specific data format (20-22) and rendering cues (17, 28, 33).

21.5 Sequencer Modes

The sequencer supports two distinct modes of operation, point mode and interval mode, with different definitions for
active cues.

21.5.1 Point Mode

Point mode means that sequencing is based on a moving sequencing point.

The sequencer is controlled by a single timing object and uses the position of the timing object as sequencing point.

A cue is active whenever the sequencing point is inside the cue interval.

Point mode sequencing is the traditional approach for sequencing timed data based on a media clock.

Fig. 1: The figure illustrates a set of cues and a timing object. The vertical dashed line shows the position of the timing
object on the timeline. Cues that are intersected by this line, one green and one purple, are active. As the timing object
moves to the right, a blue cue will soon be activated to, just before the green cue is deactivated.

Initialise a sequencer in point mode by supplying a single timing object.

// dataset
let ds;
// timing object
let to = new TimingObject();
// point mode sequencer
let activeCues = new Sequencer(ds, to);

Demo

Demo Sequencer Point Mode sequencing timed data using a single timing object (see Point Mode).

86 Chapter 21. Sequencer

timingsrc v3, Release 1.0

21.5.2 Interval Mode

Interval mode means that sequencing is based on a moving sequencing interval.

The sequencer is controlled by two timing objects, and the sequencer uses the positions of the two timing objects to
form the sequencing interval.

A cue is active whenever at least one point inside the sequencing interval is also inside the cue interval.

Interval mode is useful for playback of sliding windows of timed data. For instance, interval mode sequencing can
be used in conjuction with point mode sequencing, to prefetch timed data just-in-time for point mode sequenced
rendering.

Fig. 2: The figure illustrates a set of cues and two timing objects. The vertical dashed lines shows the positions of the
timing objects on the timeline. Cues that are visible between these two lines are active. In this case, the active cues
include 2 gray, 2 light-blue, 2 green, 1 pink, 2 purple, 1 yellow and 12 blue cues. As both timing objects move to the
right, the first event will be the activation of the blue cue to the right of the second timing object.

Initialise a sequencer in interval mode by supplying two timing objects.

// dataset
let ds;

// timing object
let to1 = new TimingObject();

/*
skewconverter
creaate timing object 10.0 ahead of to1

*/
let to2 = new SkewConverter(to1, 10.0);

// interval mode sequencer
let s2 = new Sequencer(ds, to1, to2);

Demo

Demo Sequencer Interval Mode sequencing timed data using two timing objects (see Interval Mode).

21.5. Sequencer Modes 87

timingsrc v3, Release 1.0

21.6 Cue ordering

During playback, if multiple cues share endpoint values, playback events will also be due at the same time. In this
case, cue ordering is based on Endpoint Ordering. Endpoint ordering is used for forward movement, or no movement.
For backward movement, endpoint ordering is reversed.

Changes in the dataset may also cause events to be emitted for multiple cues at the same time. For instance, if new
cues are inserted into the dataset, some of them might immediately become active. In this case, cue ordering is still
based on Endpoint Ordering and movement direction. For forward movement or no movement, cues are ordered by
their low endpoints. For backward movement, cues are ordered by their high endpoints, and the ordering is reversed.

By default, accessors keys(), values() and entries() do not provide any guarantees with respect to cue ordering.

21.7 Events

Sequencer supports three events batch, change and remove, as defined in Cue Collection.

21.8 Cue Ordering

See Cue Ordering.

88 Chapter 21. Sequencer

CHAPTER 22

Events

Contents

• Events

– Introduction

– Terminology

– Subscription and unsubscription

– Event Callback

– Initial Events

22.1 Introduction

All classes in timingsrc uses a custom framework for event notification which supports the Initial Events pattern.

22.2 Terminology

event provider

• defines one or more named events

• accepts subscriptions and un-subscriptions of event callbacks for named events.

• triggers event notification for named events by invoking subscribing event callbacks.

event consumer

• subscribes by associating event callback with named event of event provider

• receives event notification by event callback invocation

89

timingsrc v3, Release 1.0

22.3 Subscription and unsubscription

Event consumers subscribe and un-subscribe to events using operations .on() and .off() of the event provider. For
instance, this is how to subscribe to and un-subscribe from a change event.

// event provider
let ep;

// register handler with named event
let sub = ep.on("change", function (eArg, eInfo) {

// handle change event
});

// unregister subscription
ep.off("change", sub);

It is safe to subscribe or unsubscribe from within an event callback. For instance, this can be used to implement fire
once semantics.

// event provider
let ep;

// subscribe
let sub = ep.on("change", function() {

ep.off("change", sub);
});

22.4 Event Callback

22.4.1 Execution

When an event is triggered, the execution of event callbacks is always decoupled using Promise.then(). This
avoids nested invocation of event callbacks which may be confusing and hard to debug.

22.4.2 Same Callback

It is safe to use the same event callback with multiple subscriptions. For instance, in some cases it may be practical
to handle different event types using only one callback. If needed, the eInfo parameter of event_callback()
identifies the source of the event, i.e. the event provider and the event name.

22.4.3 This

It is also possible to control the value of the this object during event callback execution. This is useful when the
callback handler is a class method, thus the callback handler must be invoked with this set to the class instance.
There are at least three ways to achieve this.

One approach is to wrap the event handler in a function which explicitly invokes the event handler with the correct
this object.

90 Chapter 22. Events

timingsrc v3, Release 1.0

class EventConsumer {

constructor(eventProvider) {
this.ep = eventProvider;
// subscribe to event from event provider
let self = this;
this.sub = this.ep.on("change", function(eArg, eInfo) {

self.onevent(eArg, eInfo);
});

}

// event handler as class method
onevent(eArg, eInfo) {...}

}

Another approach is to use .bind().

class EventConsumer {

constructor(eventProvider) {
this.ep = eventProvider;
// subscribe to event from event provider
this.sub = this.ep.on("change", this.onevent.bind(this));

}

// event handler as class method
onevent(eArg, eInfo) {...}

}

Or, you can explicitly specify the this object as an option with EventProviderInterface.on().

class EventConsumer {

constructor(eventProvider) {
this.ep = eventProvider;
// subscribe to event from event provider
this.sub = this.ep.on("change", this.onevent, {ctx:this});

}

// event handler as class method
onevent(eArg, eInfo) {...}

}

22.5 Initial Events

The traditional semantic of events systems is that events convey state changes. So, when an event consumer subscribes
to an event, there will be no event notification until the next state change occurs. This yields a common pattern when
mirroring stateful event providers:

1. Request a snapshot of the currect state

2. Subscribe to future state changes. For each state change, update the snapshot accordingly.

In code, this might look something like this:

22.5. Initial Events 91

timingsrc v3, Release 1.0

// event provider
let ep;

// refresh UI based on current state of event provider
function refresh (state) {...}

// request initial state
let state = ep.get_state();
refresh(state);

// subscribe to future state changes
ep.on("change", function(eArg) {

/*
update state somehow
- apply diff from eArg
- or, fetch the current state

*/
state = ep.get_state();
refresh(state);

});

The basic idea of initial events is to simplify so that we handle both initial state and subsequent state changes the
same manner, with a single event callback.

// event provider
let ep;

// refresh UI based on current state
function refresh (state) {...}

// subscribe to future state changes
ep.on("change", function(eArg) {

/*
update state somehow
- apply diff from eArg
- or, fetch the current state

*/
state = ep.get_state();
refresh(state);

});

For this to be correct, the event provider must provide the initial state as event notifications, prior to delivering events
as usual. The initial events semantic thus simplifies application code and shifts initialization complexity from the
event consumer onto the event provider.

The initial events semantic only affects a few details in the EventProviderInterface(). Primarily, there is an
extra event. The eInfo.init parameter of event_callback() is true for initial events. It is also possible to opt
out of initial events semantic, by specifying {init:false} as option to EventProviderInterface.on().

92 Chapter 22. Events

CHAPTER 23

Events API

Events API is common to all objects implementing the Events. This includes Dataset and Sequencer.

event_callback(eArg, eInfo)
Callback function for event notification, invoked by event provider.

Arguments

• eArg (object) – Event argument. Application specific object defined by event provider.
May be undefined. Typically used to describe the state transition that caused the event
to be triggered.

• eInfo (object) – Event information. Generic object defined by event provider.

eInfo.src event provider object

eInfo.name event name

eInfo.sub subscription object

eInfo.init true if event is init event

class EventProviderInterface()
Event provider interface

EventProviderInterface.on(name, callback[, options])
Register a callback for events with given name. Returns subscription handle.

Arguments

• name (string) – event name

• callback (function) – event_callback()

• options (object) – Callback options

options.ctx Specify context for this object in event callback. If not specified, this is
the event provider.

options.init Boolean. If false, opt out of init event semantics.

Throws Error if event name is not defined.

93

timingsrc v3, Release 1.0

Returns object subscription. Use subscription handle to cancel subscription with off().

EventProviderInterface.off(subscription)
Un-register a callback for given subscription handle.

Arguments

• subscription (object) – subscription handle from on()

94 Chapter 23. Events API

CHAPTER 24

Cue Collection API

The cue collection API is common to all objects implementing the Cue Collection interface. This includes Dataset
and Sequencer.

class CueCollection(options)

Arguments

• options.order (object) – order, see Cue Ordering

Constructor abstrac base class for cue collection.

CueCollection.size
see JS Map Documentation

CueCollection.has(key)
see JS Map Documentation

CueCollection.get(key)
see JS Map Documentation

CueCollection.keys()
see JS Map Documentation

No particular ordering is guaranteed.

CueCollection.values()
see JS Map Documentation

No particular ordering is guaranteed.

CueCollection.entries()
see JS Map Documentation

No particular ordering is guaranteed.

CueCollection.cues(options)
The cues method is similar to CueCollection.values(), but conveniently adds support for sorting
the resulting cues. See Cue Ordering. Order supplied in this function take precedent over order supplied
in constructor.

95

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

timingsrc v3, Release 1.0

Arguments

• options.order (object) – ordering of cues

– string “low” : ascending order by lower cue interval endpoint

– string “high”: ascending order by higher cue interval endpoint

– function cmp: custom order by supplying ordering function, similar to Array.sort(cmp).

Returns Array array of cues

CueCollection.on(name, callback[, options])
see EventProviderInterface.on()

CueCollection.off(name, subscription)
see EventProviderInterface.off()

96 Chapter 24. Cue Collection API

CHAPTER 25

Timing Object API

class TimingObject(options)
Timing object constructor.

Arguments

• options (object) – options for timing object creation

• options.range (Array) – range of timing object timeline [low, high]

• options.position (float) – initial position

• options.velocity (float) – initial velocity

• options.acceleration (float) – initial acceleration

TimingObject.vector
Current state vector of timing object.

Returns object initial state vector.

TimingObject.range
Current range restrictions on timing object.

Param Array range new range : [low, high]

Returns Array range : [low, high]

TimingObject.ready
Promise resolved when timing object is ready

Returns Promise ready promise

TimingObject.pos
Convenience accessor for timing object position, based on query.

Returns float current position

TimingObject.vel
Convenience accessor for timing object velocity, based on query.

Returns float current velocity

97

timingsrc v3, Release 1.0

TimingObject.acc
Convenience accessor for timing object acceleration, based on query.

Returns float current acceleration

TimingObject.timingsrc
Setter/getter property current parent of timing object.

timingsrc is undefined if timing object is local object (does not have a parent). Otherwise timingsrc
may be Timing Object or Timing Provider

Param object timingsrc new timingsrc

Returns object timingsrc

TimingObject.isReady()
Timing object ready state (internal vector defined)

Returns boolean true if timing object is ready

TimingObject.query()
Query timing object.

see TimingObject Query

Returns vector current state vector

TimingObject.update(vector)
Update timing object.

see TimingObject Update

Returns Promise update promise

TimingObject.on(name, callback[, options])
Register event handler

see EventProviderInterface.on()

see Change Event, Timeupdate Event and Rangechange Event

TimingObject.off(name, subscription)
Unregister event handler

see EventProviderInterface.off()

98 Chapter 25. Timing Object API

CHAPTER 26

Timing Converter API

Contents

• Timing Converter API

– Introduction

– Skew Converter API

– Scale Converter API

– Loop Converter API

– Delay Converter API

– Timeshift Converter API

26.1 Introduction

All timing converters implement the Timing Object API.

26.2 Skew Converter API

Skew Converter shifts all positions of its parent timingsrc by skew. Skew can be set at any time, and an skewchange
event is emitted whenever the skew is changed.

class SkewConverter(timingsrc, skew)

Arguments

• timingsrc (object) – parent timingobject or timingprovider

• skew (float) – initial skew

99

timingsrc v3, Release 1.0

Creates a skew converter tied to parent timingsrc. Skew converter defines skewchange event.

SkewConverter.skew

Param float skew new skew

Returns float skew current skew

26.3 Scale Converter API

Scale Converter multiplies the vector of its parent timingsrc with a factor. This factor can be set at any time, and an
scalechange event is emitted whenever the scale is changed.

class ScaleConverter(timingsrc, factor)

Arguments

• timingsrc (object) – parent timingobject or timingprovider

• factor (float) – initial factor

Creates a scale converter tied to parent timingsrc. Scale converter defines scalechange event.

ScaleConverter.factor

Param float factor new factor

Returns float factor current factor

26.4 Loop Converter API

Loop Converter is essentially a modulo operation on its parent timingsrc, looping the position of the converter over
values within its range.

class LoopConverter(timingsrc, range)

Arguments

• timingsrc (object) – parent timingobject or timingprovider

• range (Array) – initial range, e.g. [low,high]

Creates a loop tied to parent timingsrc.

26.5 Delay Converter API

Delay Converter mirrors the behaviour of its parent timingsrc, yet with a fixed delay.

class DelayConverter(timingsrc, delay)

Arguments

• timingsrc (object) – parent timingobject or timingprovider

• delay (float) – initial delay

Creates a delay converter tied to parent timingsrc. Delay converter defines delaychange event.

DelayConverter.delay

100 Chapter 26. Timing Converter API

timingsrc v3, Release 1.0

Param float delay new delay

Returns float delay current delay

26.6 Timeshift Converter API

Timeshift Converter projects the current behavior of the parent timingsrc into the future, or back in time. Positive
offset is speculative, essentially predicting future states of the parent timingsrc.

class TimeshiftConverter(timingsrc, offset)

Arguments

• timingsrc (object) – parent timingobject or timingprovider

• offset (float) – initial time offset

Creates a timeshift converter tied to parent timingsrc. Timeshift converter defines offsetchange event.

TimeshiftConverter.offset

Param float offset new time offset

Returns float offset current time offset

26.6. Timeshift Converter API 101

timingsrc v3, Release 1.0

102 Chapter 26. Timing Converter API

CHAPTER 27

Timing Provider API

see Timing Provider

class TimingProvider()
Abstract constructor function for timing provider object

Returns object timingProvider

TimingProvider.vector
Get current state vector of timing provider

Returns object vector current state vector of timing provider.

TimingProvider.skew
Get current skew of timing provider clock - relative to local clock

Returns float skew current skew

TimingProvider.range
Get current range restrictions of timing provider

Returns Array range range of timing provider, [low, high]

TimingProvider.update(vector)
Request update to current state vector of timing provider

Arguments

• vector (object) – update vector

Update vectors may be partially complete. For instance, to change the position, only the
new position must be given.

TimingProvider.on(type, callback)
Register callback on timingprovider event. Support for Initial Events is not required. Supported event-
types: skewchange and vectorchange

Arguments

• type (string) – event type

103

timingsrc v3, Release 1.0

• callback (function) – event callback

104 Chapter 27. Timing Provider API

CHAPTER 28

Interval API

class Interval(low[, high[, lowInclude[, highInclude]]])
Arguments

• low (float) – leftmost endpoint of interval

• high (float) – rightmost endpoint of interval

• lowInclude (boolean) –

low endpoint value included in interval
true means left-closed
false means left-open
true by default

• highInclude (boolean) –

high endpoint value included in interval
true means right-closed
false means right-open
false by default

If only low is given, or if low == high, the interval is singular. In this case lowInclude and highInclude are
both true.

If low is -Infinity, lowInclude is always true If high is Infinity, highInclude is always true

Interval.low
float: left endpoint value

Interval.high
float: right endpoint value

Interval.lowInclude
boolean: true if interval is left-closed

Interval.highInclude
boolean: true if interval is right-closed

105

timingsrc v3, Release 1.0

Interval.singular
boolean: true if interval is singular

Interval.finite
boolean: true if both low and high are finite values

Interval.length
float: interval length (high-low)

Interval.endpointLow
endpoint: low endpoint [value, false, lowInclude, singular]

Interval.endpointHigh
endpoint: low endpoint [value, true, highInclude, singular]

Interval.toString()

Returns string

Human readable string

Interval.covers_endpoint(p)

Arguments

• p (number) – point

Returns boolean True if point p is inside interval

Test if point p is inside interval.

See Interval Comparison.

let a = new Interval(4, 5) // [4,5)
a.covers_endpoint(4.0) // true
a.covers_endpoint(4.3) // true
a.covers_endpoint(5.0) // false

Interval.equals(other)

Arguments

• other (Interval) – interval to compare with

Returns boolean true if intervals are equal

See Interval Comparison.

Interval.compare(other)

Arguments

• other (Interval) – interval to compare with

Returns int comparison relation

Compares interval to another interval, i.e. cmp(interval, other). See Interval Comparison.

let a = new Interval(4, 5) // [4,5)
let b = new Interval(4, 5, true, true) // [4,5]
a.compare(b) == Interval.Relation.COVERED // true
b.compare(a) == Interval.Relation.COVERS // true

Interval.match(other[, mask=62])
Arguments

106 Chapter 28. Interval API

timingsrc v3, Release 1.0

• other (Interval) – interval to compare with

Returns boolean true if intervals match

Matches two intervals. Mask defines what consitutes a match. See Interval Match.

let a = new Interval(4, 5) // [4,5)
let b = new Interval(4, 5, true, true) // [4,5]
a.match(b) // true
b.match(a) // true

Interval.Relation

{
OUTSIDE_LEFT: 64, // 0b1000000
OVERLAP_LEFT: 32, // 0b0100000
COVERED: 16, // 0b0010000
EQUALS: 8, // 0b0001000
COVERS: 4, // 0b0000100
OVERLAP_RIGHT: 2, // 0b0000010
OUTSIDE_RIGHT: 1 // 0b0000001

}

Interval.Interval.Relation.OUTSIDE_LEFT

Interval.Relation.OVERLAP_LEFT

Interval.Relation.COVERED

Interval.Relation.EQUAL

Interval.Relation.COVERS

Interval.Relation.OVERLAP_RIGHT

Interval.Relation.OUTSIDE_RIGHT

Interval.cmpLow(interval_a, interval_b)

Arguments

• interval_a (Interval) – interval A

• interval_b (Interval) – interval B

Returns int

a < b : -1
a == b : 0
a > b : 1

Use with Array.sort() to sort Intervals by their low endpoint.

a = [
new Interval(4,5),
new Interval(2,3),
new Interval(1,6)

];
a.sort(Interval.cmpLow);
// [1,6), [2,3), [4,5)

Interval.cmpHigh(interval_a, interval_b)

107

timingsrc v3, Release 1.0

Arguments

• interval_a (Interval) – interval A

• interval_b (Interval) – interval B

Returns int

a < b : -1
a == b : 0
a > b : 1

Use with Array.sort() to sort Intervals by their high endpoint.

a = [
new Interval(4,5),
new Interval(2,3),
new Interval(1,6)

];
a.sort(Interval.cmpHigh);
// [2,3), [4,5), [1,6)

108 Chapter 28. Interval API

CHAPTER 29

Dataset API

class Dataset(options)

Arguments

• options.order (object) – see Cue Ordering

Creates an empty dataset.

Dataset.update(cues[, options])
Arguments

• cues (iterator) – iterable of cues or single cue

• options (object) – options

Returns Array list of cue change items

Insert, replace and delete cues from the dataset. For details on how to construct cue parameters see Update.
For details on return value see Update Result.

• options.equals: custom equality function for cue data.

See Cue Equality.

• options.chaining: support chaining. True by default.

See Cue Chaining.

• options.safe: safe mode. False by default.

See Cue Management.

• options.debug: debug mode. False by default.

Performs integrity testing of internal datastructures after each update operation, throwing
exceptions if not passed.

Dataset.addCue(key, interval, data)
Add or replace a single cue. See Update Convenience Methods.

Arguments

109

timingsrc v3, Release 1.0

• key (object) – cue key

• interval (Interval) – cue interval

• data (object) – cue data

Returns Dataset dataset dataset

Dataset.removeCue(key)
Remove a single cue. See Update Convenience Methods.

Arguments

• key (object) – cue key

Returns Dataset dataset dataset

Dataset.makeBuilder(options)
Make cue argument builder object with options. See Update Convenience Methods.

Params object options update options (see Dataset.update())

Returns object builder cue argument update builder

• builder.addCue(key, interval, data)

• builder.removeCue(key)

Dataset.clear()

Returns Array list of change items: cue changes caused by the operation

Clears all cues of the dataset. Much more effective than iterating through cues and deleting them.

Dataset.lookup(interval[, mask])
Arguments

• interval (Interval) – lookup interval

• mask (int) – match mask

Returns Array list of cues

Returns all cues matching a given interval on dataset. Lookup mask specifies the exact meaning of match,
see Interval Match.

Note also that the lookup operation may be used to lookup cues that match a single point on the timeline,
simply by defining the lookup interval as a single point, see Definition.

Dataset.lookup_endpoints(interval)

Arguments

• interval (Interval) – lookup interval

Returns Array list of {endpoint: endpoint, cue:cue} objects

Lookup all cue endpoints on the dataset, within some interval see Lookup endpoints.

Dataset.lookup_delete(interval[, mask])
Arguments

• interval (Interval) – lookup interval

• mask (int) – match mask

Returns Array list of cue change items

110 Chapter 29. Dataset API

timingsrc v3, Release 1.0

Deletes all cues matching a given lookup interval. Similar to lookup, see Lookup.

Dataset.size
see ObservableMapInterface.size()

Dataset.has(key)
see ObservableMapInterface.has()

Dataset.get(key)
see ObservableMapInterface.get()

Dataset.keys()
see ObservableMapInterface.keys()

Dataset.values()
see ObservableMapInterface.values()

Dataset.entries()
see ObservableMapInterface.entries()

Dataset.cues(options)
see CueCollection.cues()

Dataset.on(name, callback[, options])
see EventProviderInterface.on()

Dataset.off(name, subscription)
see EventProviderInterface.off()

111

timingsrc v3, Release 1.0

112 Chapter 29. Dataset API

CHAPTER 30

Sequencer API

class Sequencer(dataset, to_A[, to_B], options)

Arguments

• dataset (Dataset) – source dataset of sequencer

• to_A (TimingObject) – first timing object

• to_B (TimingObject) – optional second timing object

• options.order (object) – see Cue Ordering

Creates a sequencer associated with a dataset.

Sequencer.dataset
Dataset used by sequencer.

Sequencer.size
see CueCollection.size()

Sequencer.has(key)
see CueCollection.has()

Sequencer.get(key)
see CueCollection.get()

Sequencer.keys()
see CueCollection.keys()

Sequencer.values()
see CueCollection.values()

Sequencer.entries()
see CueCollection.entries()

Sequencer.cues(options)
see CueCollection.cues()

Sequencer.on(name, callback[, options])
see EventProviderInterface.on()

113

timingsrc v3, Release 1.0

Sequencer.off(name, subscription)
see EventProviderInterface.off()

114 Chapter 30. Sequencer API

CHAPTER 31

MediaSync API

class MCorp.mediaSync(elem, to[, options])
Constructor function. Returns handle for controlling synchronization.

Arguments

• elem (HTMLMediaElement) – The HTMLMediaElement to synchronize

• to (TimingObject) – The timingobject to synchronize after

• options (object) – Synchronization options

• options.skew (float) – (default 0.0) Skew for timing object position, ehead of syn-
chronization. Tip: calculate by start offset of content - start position of timing object.

• options.automute (boolean) – (default true) Mute the media element when playing
too fast (or too slow)-

• options.mode (string) – (default “auto”) - “skip”: Force “skip” mode - i.e. don’t try
using playbackRate. - “vpbr”: Force variable playback rate. Normally not a good idea -
“auto” (default): try playbackRate. If it’s not supported, it will struggle for a while before
reverting. If ‘options.remember’ is not set to false, this will only happen once after each
browser update.

• options.debug (object) – (default null) If debug is true, log to console, if a function,
the function will be called with debug info

• options.target (float) – (default 0.025 - 25ms ~ lipsync) Target precision. Default
is likely OK, if we can do better, we will. Target too narrow, makes for a more skippy
experience. When using variable playback rates, this parameter is ignored (target is always
0)

• options.remember (boolean) – (default true) Remember the last experience on this
device - stores support or lack of support for variable playback rate. Records in localStorage
under key “mediascape_vpbr”, clear it to re-learn.

Returns object mediaSync mediaSync object

115

timingsrc v3, Release 1.0

MCorp.mediaSync.getSkew()
Get the current skew

Returns float skew current skew

MCorp.mediaSync.setSkew(skew)
Skew the timing object. The same effect can be achieved by using a Skew Converter.

Arguments

• skew (float) – new skew

MCorp.mediaSync.setOption(key, value)
Set or update options

Arguments

• key (string) – The option key to set

• value (object) – The option value to set

sync.setOption("debug", false); // Disable debugging
sync.setOption("target", 0.1); // Change to coarser target

MCorp.mediaSync.getMethod()
Get the current method for synchronization

Returns string method “skip” or “playbackrate”

MCorp.mediaSync.setMotion(to)
Set the timing object to synchronize after

Arguments

• to (TimingObject) – The timingobject to synchronize after

MCorp.mediaSync.stop()
Stop synchronization

116 Chapter 31. MediaSync API

CHAPTER 32

Welcome to timingsrc!

Timingsrc is a programming model for precisely timed Web applications. The model is based on the Timing Object,
which allows precise synchronization and control across multiple media sources, media types, UI components and
media frameworks.

For online timing support, connect an online Timing Provider to the Timing Object. The Shared Motion Timing
Provider is hosted online and provides millisecond precise timing globally for Web clients and is open for non-
commercial experimentation.

Need to synchronize HTML5 video? Check out Demo MediaSync

Need to synchronize timed data? Check out Demo Sequencer Point Mode or Demo Sequencer Interval Mode

Need to go online? Check out Demo TimingProvider

117

timingsrc v3, Release 1.0

118 Chapter 32. Welcome to timingsrc!

CHAPTER 33

Timing Object

let to = new TimingObject();

The TimingObject is the central concept of the timingsrc programming model. In essence, the timingobject is a timeline
with an API for control. If you set velocity, the position on the timeline will increase in time according to that velocity.
The timing object additionally supports behavior like time-shifting, different velocities (including backwards), and
acceleration.

• Timing Object

• Timing Object API

119

timingsrc v3, Release 1.0

120 Chapter 33. Timing Object

CHAPTER 34

Timing Converter

let c = new SkewConverter(to, 4.0);

A TimingConverter is a special kind of timing objects that depends on a parent timing object. Timing converters are
useful when you need an alternative representations for a timing object. For instance, timing converters may be used
to skew or scale the timeline.

• Timing Converter

• Timing Converter API

121

timingsrc v3, Release 1.0

122 Chapter 34. Timing Converter

CHAPTER 35

Timing Provider

let to = new TimingObject({provider: timing_provider});

Timing objects may be connected to remote timing resources, i.e. timing resources which live outside the browsing
context, for instance hosted by an online timing service. This is done by initializing the timing object with a Timing-
Provider. Timing providers are proxy objects to external timing resources, allowing timing objects to be used across
different service implementations for timing resources.

• Timing Provider

• Timing Provider API

123

timingsrc v3, Release 1.0

124 Chapter 35. Timing Provider

CHAPTER 36

Dataset and Sequencer

let ds = new Dataset();
let s = new Sequencer(ds, to);

Consistent playback of timed data is a key use case for the timing object. This is achieved using Dataset and Sequencer.
Dataset allows any type of time data to be represented as cues. Sequencers dynamically provides the set of active cues,
always consistent with the timing object. Both dataset and sequencer implement the :ref‘cuecollection‘ interface.

• Cue Collection

• Cue Collection API

• Dataset

• Dataset API

• Sequencer

• Sequencer API

125

timingsrc v3, Release 1.0

126 Chapter 36. Dataset and Sequencer

CHAPTER 37

MediaSync

let ms = new MediaSync(to, video_element);

Another important use case is consistent playback of HTML5 audio and video. This is achieved by connecting the
video element to the timing object, using the MediaSync wrapper.

• MediaSync

• MediaSync API

127

timingsrc v3, Release 1.0

128 Chapter 37. MediaSync

CHAPTER 38

Indices and tables

• genindex

129

timingsrc v3, Release 1.0

130 Chapter 38. Indices and tables

Index

C
CueCollection() (class), 95
CueCollection.size (CueCollection attribute), 95

D
Dataset() (class), 109
Dataset.size (Dataset attribute), 111
DelayConverter() (class), 100
DelayConverter.delay (DelayConverter at-

tribute), 100

E
event_callback() (built-in function), 93
EventProviderInterface() (class), 93

I
Interval() (class), 105
Interval.cmpHigh() (Interval method), 107
Interval.cmpLow() (Interval method), 107
Interval.endpointHigh (Interval attribute), 106
Interval.endpointLow (Interval attribute), 106
Interval.finite (Interval attribute), 106
Interval.high (Interval attribute), 105
Interval.highInclude (Interval attribute), 105
Interval.Interval.Relation.OUTSIDE_LEFT

(Interval.Interval.Relation attribute), 107
Interval.length (Interval attribute), 106
Interval.low (Interval attribute), 105
Interval.lowInclude (Interval attribute), 105
Interval.Relation (global variable or constant),

107
Interval.Relation.COVERED (Interval.Relation

attribute), 107
Interval.Relation.COVERS (Interval.Relation

attribute), 107
Interval.Relation.EQUAL (Interval.Relation at-

tribute), 107
Interval.Relation.OUTSIDE_RIGHT (Inter-

val.Relation attribute), 107

Interval.Relation.OVERLAP_LEFT (Inter-
val.Relation attribute), 107

Interval.Relation.OVERLAP_RIGHT (Inter-
val.Relation attribute), 107

Interval.singular (Interval attribute), 105

L
LoopConverter() (class), 100

M
MCorp.mediaSync() (class), 115

S
ScaleConverter() (class), 100
ScaleConverter.factor (ScaleConverter at-

tribute), 100
Sequencer() (class), 113
Sequencer.dataset (Sequencer attribute), 113
Sequencer.size (Sequencer attribute), 113
SkewConverter() (class), 99
SkewConverter.skew (SkewConverter attribute),

100

T
TimeshiftConverter() (class), 101
TimeshiftConverter.offset (TimeshiftCon-

verter attribute), 101
TimingObject() (class), 97
TimingObject.acc (TimingObject attribute), 98
TimingObject.pos (TimingObject attribute), 97
TimingObject.range (TimingObject attribute), 97
TimingObject.ready (TimingObject attribute), 97
TimingObject.timingsrc (TimingObject at-

tribute), 98
TimingObject.vector (TimingObject attribute), 97
TimingObject.vel (TimingObject attribute), 97
TimingProvider() (class), 103
TimingProvider.range (TimingProvider at-

tribute), 103

131

timingsrc v3, Release 1.0

TimingProvider.skew (TimingProvider attribute),
103

TimingProvider.vector (TimingProvider at-
tribute), 103

132 Index

	Introduction
	Module
	Quickstart
	Version
	Standardization
	Contributions
	Demo TimingObject
	Demo TimingConverter
	Demo TimingProvider
	Demo MediaSync
	Demo Sequencer Point Mode
	Demo Sequencer Interval Mode
	Timing Object
	Timing Converter
	Timing Provider
	MediaSync
	Interval
	Cue
	Cue Collection
	Dataset
	Sequencer
	Events
	Events API
	Cue Collection API
	Timing Object API
	Timing Converter API
	Timing Provider API
	Interval API
	Dataset API
	Sequencer API
	MediaSync API
	Welcome to timingsrc!
	Timing Object
	Timing Converter
	Timing Provider
	Dataset and Sequencer
	MediaSync
	Indices and tables
	Index

